Дробно-рациональные выражения

Выражения, которые могут содержать операции сложения, вычитания, умножения, деления и возведения в натуральную степень чисел и переменных, называются рациональными. Если рациональное выражение содержит операцию деления на выражение с переменной, то его называют дробным, а иначе — целым.

Рациональной дробью называют выражение вида $$\frac{A}{B},$$ где $$A$$ и $$B$$ — многочлены.

Если числитель и знаменатель рациональной дроби умножить или разделить на многочлен, отличный от нуль-многочлена, то получим дробь, тождественно равную данной: $$\frac{A}{B}=\frac{A\cdot C}{B\cdot C},C\neq0.$$

Сокращением дроби является деление числителя и знаменателя на общий множитель. Для сокращения дроби необходимо сначала разложить на множители ее числитель и знаменатель.

Приведение дробей к общему знаменателю:

  1. Найти НОК знаменателей дробей — это и будет общий знаменатель;
  2. Найти дополнительный множитель для каждой дроби (делим общий знаменатель на знаменатель дроби);
  3. Умножить числитель и знаменатель каждой дроби на соответствующий дополнительный множитель.

Для сложения или вычитания дробей с разными знаменателями необходимо сначала их привести к общему знаменателю.

Произведением рациональных дробей является дробь, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей.

Деление дробей сводится к произведению. Дробь, на которую нужно разделить, переворачиваем (меняем местами числитель и знаменатель), а затем умножаем: $$\frac{A}{B}:\frac{C}{D}=\frac{A\cdot D}{B\cdot C}.$$

Возведение рациональной дроби в степень с целым показателем: $$(\frac{A}{B})^n=\frac{A^n}{B^n}.$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.