Основные неопределенные интегралы

Определение

Неопределённый интеграл для функции $$f(x)$$ —
это совокупность всех первообразных* данной функции.

$$a,\;n,\;C$$ — константы (постоянные числа).

1. $$\int a\;dx=ax+C$$

2. $$\int x^n\;dx=\frac{x^{n+1}}{n+1}+C\;(n\neq-1)$$

3. $$\int \frac{dx}{x}=\ln|x|+C$$

4. $$\int e^x\;dx=e^x+C$$

5. $$\int a^x\;dx=\frac{a^x}{\ln a}+C\;(a>0,\;a\neq1)$$

6. $$\int \sin x\;dx=-\cos x+C$$

7. $$\int \cos x\;dx=\sin x+C$$

8. $$\int \frac{dx}{\cos^2 x}=\text{tg}\, x+C$$

9. $$\int \frac{dx}{\sin^2 x}=-\text{ctg}\, x+C$$

10. $$\int \frac{dx}{\sqrt{a^2-x^2}}=\arcsin\frac{x}{a}+C=-\arccos\frac{x}{a}+C$$

11. $$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\,\text{arctg}\,\frac{x}{a}+C$$

12. $$\int \frac{dx}{\sqrt{x^2\pm a^2}}=\ln|x+\sqrt{x^2\pm a^2}|+C$$

13. $$\int \sqrt{x^2\pm a^2}\,dx=\frac{x}{2}\sqrt{x^2\pm a^2}\pm \frac{a^2}{2}\ln|x+\sqrt{x^2\pm a^2}|+C$$

14. $$\int \frac{dx}{a^2-x^2}=\frac{1}{2a}\ln\left | \frac{x+a}{x-a} \right |+C$$

15. $$\int \frac{dx}{\cos x}=\ln\left | \text{tg}\left ( \frac{x}{2}+\frac{\pi}{4} \right ) \right |+C$$

16. $$\int \frac{dx}{\sin x}=\ln\left | \text{tg}\,\frac{x}{2} \right |+C$$

*Определение

Первообразной данной функции $$f$$ называют такую $$F$$, производная которой (на всей области определения) равна $$f,$$ то есть $$F$$’$$=f.$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.