Тригонометрия

Теоремы синусов и косинусов

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

$$\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}=2R$$

Здесь $$a,\;b,\;c$$ — стороны треугольника, $$\alpha,\;\beta,\;\gamma$$ — соответствующие сторонам противолежащие углы, $$R$$ — радиус окружности, описанной около треугольника.Произвольный треугольник

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

$$a^2=b^2+c^2-2\cdot b\cdot c\cdot\cos\angle A$$

$$b^2=a^2+c^2-2\cdot a\cdot c\cdot\cos\angle B$$

$$c^2=a^2+b^2-2\cdot a\cdot b\cdot\cos\angle C$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!