Числовой автомат «ТЮМ–XVI»

Предлагаем Вашему вниманию конкурсную задачу из турнира юных математиков.

Задание

Числовой автомат «ТЮМ-XVI» может выполнять такие операции с натуральными числами :

  • вычесть из данного числа число 3 (если оно больше, чем  3);
  • умножить данное число на 3;
  • разделить данное число на 3 (если  оно делиться на 3 без остатка).

Ответьте на следующие вопросы:

  1. За какое наименьшее количество операций  можно из числа 82 получить число 81?
  2. За какое наименьшее количество операций  можно из числа 81 получить число 82?
  3. Аналогичный  вопрос относительно получения  числа $$n$$ из числа  $$m.$$

Решение:

Прежде, чем отвечать на вопросы задания, составим формулы для нахождения предыдущего натурального числа из последующего и последующего из предыдущего, используя свойства числового автомата «ТЮМ-XVI».

(1) Формула нахождения предыдущего натурального числа из последующего

Пусть $$n$$ — натуральное число, $$n+1$$ — следующее за ним натуральное число.

Если мы умножим последующее натуральное число на три, затем из полученного произведения вычтем три и результат вычитания разделим на три, то получим предыдущее натуральное число

$$\frac{(n+1) \cdot 3-3}{3}=\frac{3\cdot(n+1-1)}{3}=n$$

Докажем формулу $$n=\frac{(n+1) \cdot 3-3}{3}$$ методом математической индукции

Доказательство:

1) $$n=1, n+1=2$$

$$\frac{2\cdot3-3}{3}=\frac{6-3}{3}=\frac{3}{3}=1$$ — верно

2) Предположим, что верно $$n=\frac{(n+1) \cdot 3-3}{3}$$

$$n+1=\frac{(n+1) \cdot 3-3}{3}+1=\frac{(n+1) \cdot 3-3+3}{3}=\frac{((n+1) +1)\cdot 3-3}{3}$$ — ч.т.д.

(2) Формула нахождения последующего натурального числа из предыдущего

Пусть $$n$$ — натуральное число, $$n+1$$ — следующее за ним натуральное число.

Если мы дважды умножим натуральное число на три, из полученного произведения $$2n-1$$ раз вычтем тройку и результат вычитания разделим на три, то получим последующее натуральное число

$$\frac{n\cdot3\cdot3-(2n-1)\cdot3}{3}=\frac{9n-6n+3}{3}=\frac{3n+3}{3}=\frac{3(n+1)}{3}=n+1$$

Докажем формулу $$n+1=\frac{n\cdot3\cdot3-(2n-1)\cdot3}{3}$$ методом математической индукции

Доказательство:

1) $$n=1, n+1=2$$

$$\frac{1\cdot3\cdot3-(2\cdot1-1)\cdot3}{3}=\frac{9-3}{3}=\frac{6}{3}=2$$ — верно

2) Предположим, что верно $$n+1=\frac{n\cdot3\cdot3-(2n-1)\cdot3}{3}$$

$$(n+1)+1=\frac{n\cdot3\cdot3-(2n-1)\cdot3}{3}+1=\frac{n\cdot3\cdot3-(2n-1)\cdot3+3}{3}=$$

$$=\frac{9n-6n+3+3}{3}=\frac{9n-6n+6+9-9}{3}=\frac{(9n+9)-6n-3}{3}=\frac{9(n+1)-3(2n+1)}{3}=$$

$$=\frac{9(n+1)-3(2n+2-1)}{3}=\frac{9(n+1)-3(2(n+1)-1)}{3}=\frac{(n+1)\cdot3\cdot3-(2(n+1)-1)\cdot3}{3}$$ — ч.т.д.

Приступим к вопросам

1. За какое наименьшее количество операций  можно из числа 82 получить число 81?

Для получения числа 81 из 82 воспользуемся формулой (1) при этом выполнив три операции числового автомата «ТЮМ-XVI» (одну операцию умножения на три, одну операцию вычитания тройки и одну операцию деления на три).

$$\frac{82\cdot3-3}{3}=81$$

2. За какое наименьшее количество операций  можно из числа 81 получить число 82?

Для получения числа 82 из 81 воспользуемся формулой (2) при этом выполнив сто шестьдесят четыре операции числового автомата «ТЮМ-XVI» (две операции умножения на три, сто шестьдесят одну операцию вычитания тройки и одну операцию деления на три).

$$\frac{81\cdot3\cdot3-(2\cdot81-1)\cdot3}{3}=\frac{729-483}{3}=\frac{246}{3}=82$$

3. Аналогичный  вопрос относительно получения  числа $$n$$ из числа  $$m.$$

На третий вопрос предлагаем ответить самостоятельно, применив в общем виде формулы (1) или (2), в зависимости от чисел $$m$$ и $$n.$$

Если Вы знаете более рациональное решение, свяжитесь с нами.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

Теги: