Алгебра

Задание 10 (Графики)

Построить график функции:

$$y=\sqrt{1+tg^2x}\cdot\cos x\cdot\sqrt{|x|}$$

Решение:

Преобразуем исходную функцию:

$$y=\sqrt{1+tg^2x}\cdot\cos x\cdot\sqrt{|x|},\;x\neq\frac{\pi}{2}+\pi n,\; n\in\mathbb{Z}$$

$$y=\frac{1}{\sqrt{\cos^2x}}\cdot\cos x\cdot\sqrt{|x|},\;x\neq\frac{\pi}{2}+\pi n,\; n\in\mathbb{Z}.$$

$$y=sgn\left (\cos x \right )\cdot\sqrt{|x|},\;x\neq\frac{\pi}{2}+\pi n,\; n\in\mathbb{Z}.$$

$$\text{sgn}(x)$$- кусочно-постоянная функция сигнум, которая определяется следующим образом:$$y=\left\{\begin{matrix} 1, & x>0\\ 0,&x=0\\-1, & x<0\end{matrix}\right.$$

$$y=\left\{\begin{matrix} \sqrt{|x|}, & \cos x>0\\ -\sqrt{|x|}, & \cos x<0 \end{matrix}\right.,\;x\neq\frac{\pi}{2}+\pi n,\; n\in\mathbb{Z}.$$

Сначала построим график функции $$y_{1}=\sqrt{|x|}$$

График функции $$y_{1}=\sqrt{|x|}$$

Теперь построим график искомой функции $$y=\sqrt{1+tg^2x}\cdot\cos x\cdot\sqrt{|x|},$$ учитывая, что $$x\neq\frac{\pi}{2}+\pi n,\; n\in\mathbb{Z}.$$

График функции $$y=\sqrt{1+tg^2x}\cdot\cos x\cdot\sqrt{|x|}$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!