Задание 38

(степени, геометрическая прогрессия)

В рамках подготовки к ДПА и ЗНО предлагаем Вашему вниманию задание на нахождение значения выражения. При решении задания будут использоваться свойства степеней, формулы сокращенного умножения и формула суммы геометрической прогрессии.

Задание

Найти значение выражения

$$\frac{x^{3333}+x^{333}+x^{33}+x^3+1996}{x^2+x}$$, если $$x^2+x+1=0$$.

Решение:

$$\frac{x^{3333}+x^{333}+x^{33}+x^3+1996}{x^2+x}=$$

преобразуем степени

$$=\frac{x^{3\cdot1111}+x^{3\cdot111}+x^{3\cdot11}+x^3+1996}{x^2+x}=$$

вычтем и прибавим единицы

$$=\frac{x^{3\cdot1111}-1+1+x^{3\cdot111}-1+1+x^{3\cdot11}-1+1+x^3-1+1+1996}{x^2+x}=$$

сгруппируем

$$=\frac{\left (x^{3\cdot1111}-1 \right )+\left (x^{3\cdot111}-1 \right )+\left (x^{3\cdot11}-1 \right )+\left (x^3-1 \right )+2000}{x^2+x}$$.

Рассмотрим геометрическую прогрессию: $$1;x^3;x^6;x^9;\cdots;x^{3n-3};x^{3n};x^{3n+3}\cdots$$

с первым членом $$b_1=1$$, знаменателем $$q=x^3$$ и n-м членом $$b_n=x^{3(n-1)}$$.

Вспомним формулу суммы n первых членов геометрической прогрессии $$S_n=\frac{b_1(q^n-1)}{q-1}$$

Тогда

$$S_{11}=\frac{1\left [\left (x^{3} \right )^{11}-1 \right ]}{x^3-1}=\frac{x^{3\cdot11}-1}{x^3-1}\Rightarrow x^{3\cdot11}-1=S_{11}\cdot(x^3-1)$$

$$S_{111}=\frac{1\left [\left (x^{3} \right )^{111}-1 \right ]}{x^3-1}=\frac{x^{3\cdot111}-1}{x^3-1}\Rightarrow x^{3\cdot111}-1=S_{111}\cdot(x^3-1)$$

$$S_{1111}=\frac{1\left [\left (x^{3} \right )^{1111}-1 \right ]}{x^3-1}=\frac{x^{3\cdot1111}-1}{x^3-1}\Rightarrow x^{3\cdot1111}-1=S_{1111}\cdot(x^3-1)$$

Подставим в искомое выражение

$$\frac{\left (x^{3\cdot1111}-1 \right )+\left (x^{3\cdot111}-1 \right )+\left (x^{3\cdot11}-1 \right )+\left (x^3-1 \right )+2000}{x^2+x}=$$

$$=\frac{S_{1111}\cdot(x^3-1)+S_{111}\cdot(x^3-1)+S_{11}\cdot(x^3-1)+(x^3-1)+2000}{x^2+x}=$$

$$=\frac{(x^3-1)(S_{1111}+S_{111}+S_{11}+1)+2000}{x^2+x}=$$

Вспомним формулу разности кубов

$$x^3-1=(x-1)(x^2+x+1)$$

Так как $$x^2+x+1=0$$, то $$x^3-1=0$$ и $$x^2+x=-1$$. Тогда исходное выражение примет вид

$$=\frac{0\cdot(S_{1111}+S_{111}+S_{11}+1)+2000}{-1}=-2000$$

Ответ:$$-2000$$.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.