ДПА 2013. Математика. 9 класс

Задание 42 (ДПА 2013. 9 класс. В1. Задача 3.1)

В рамках подготовки к ГИА (ДПА) и ВНО (ЗНО) предлагаем Вашему вниманию текстовую задачу, взятую из первого варианта ДПА 2013 по математике для 9 класса.

Задача

Разность половины первого числа и трети второго числа равна  2.  Если  же  первое  число  уменьшить  на  его  четвертую часть,  а  второе  число  увеличить  на  шестую  его  часть, то сумма полученных чисел будет равна 53. Най­дите эти числа.

Решение:

Пусть $$x$$ и $$y$$ — первое и второе искомое число соответственно.

По условию разность половины первого числа и трети второго числа равна  2, т.е.

$$\frac{x}{2}-\frac{y}{3}=2$$.

Так как сумма уменьшенного на четверть первого числа и увеличенного на шестую часть второго числа равна 53, то

$$\left (x-\frac{x}{4} \right )+\left (y+\frac{y}{6} \right )=53$$.

Получили систему двух уравнений с двумя неизвестными

$$\left\{\begin{matrix} \frac{x}{2}&-&\frac{y}{3}&=&2\\ \\\left (x-\frac{x}{4} \right )&+&\left (y+\frac{y}{6} \right )&=&53 \end{matrix}\right.$$

$$\left\{\begin{matrix} \frac{1}{2}x&-&\frac{1}{3}y&=&2&(1)\\ \\ \frac{3}{4}x &+&\frac{7}{6}y&=&53 &(2)\end{matrix}\right.$$

От второго уравнения вычтем первое, умноженное на три вторых, т.е. $$(2)-\frac{3}{2}\cdot(1):$$

$$\frac{3}{4}x-\frac{3}{4}x+\frac{7}{6}y-\left ( -\frac{1}{3}y\cdot\frac{3}{2} \right )=53-2\cdot\frac{3}{2}$$

$$\frac{7}{6}y+\frac{3}{6}y=53-3\Rightarrow \frac{10}{6}y=50\Rightarrow y=\frac{50\cdot6}{10}$$

$$y=30$$

Ко второму уравнению прибавим первое, умноженное на семь вторых, т.е. $$(2)+\frac{7}{2}\cdot(1):$$

$$\frac{3}{4}x+\frac{7}{4}x+\frac{7}{6}y-\frac{7}{6}y=53+7$$

$$\frac{10}{4}x=60$$

$$x=24$$

Ответ: 24 и 30.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!