Задание 44

Текстовая задача на производительность

Продолжаем готовиться к ДПА и ЗНО по математике. Рассмотрим текстовую задачу на производительность.

Задача

Первый и второй краны наполняют ванну водой за 20 минут, второй и третий — за 15 минут, а первый и третий — за 12 минут. За сколько минут наполняют такую же ванну три крана, работая вместе?

Решение:

Введем обозначения. Пусть части ванны, которую наполняют за 1 минуту первый, второй и третий кран соответственно равны $$x$$, $$y$$ и $$z$$.

Первый и второй краны наполняют ванну водой за 20 минут. Значит за одну минуту они наполнят  $$x+y=\frac{1}{20}$$ часть ванны. Получили первое уравнение.

Второй и третий наполняют ванну водой за 15 минут. Значит за одну минуту они наполнят  $$y+z=\frac{1}{15}$$ часть ванны. Получили второе уравнение.

Первый и третий наполняют ванну водой за 12 минут. Значит за одну минуту они наполнят  $$x+z=\frac{1}{12}$$ часть ванны. Получили третье уравнение.

Сложим все три уравнения и получим

$$x+y+y+z+x+z=\frac{1}{20}+\frac{1}{15}+\frac{1}{12}$$

$$2x+2y+2z=\frac{3}{60}+\frac{4}{60}+\frac{5}{60}$$

$$2(x+y+z)=\frac{3+4+5}{60}$$

$$x+y+z=\frac{12}{120}$$

$$x+y+z=\frac{1}{10}$$ — часть ванны, которую наполнят за одну минуту три крана, работая вместе.

Значит три крана, работая вместе, наполнят ванну за 10 минут.

Ответ: 10.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.