Задание 54

Нахождение второй производной для дробного выражения

Найти вторую производную от $$\frac{\sqrt{x}}{x^2+4}$$

Решение

Повторите основные правила дифференцирования

Сначала найдем первую производную, пользуясь формулой производной дробного выражения

$$(\frac{\sqrt{x}}{x^2+4})$$’$$=\frac{\frac{1}{2\sqrt{x}}\cdot(x^2+4)-\sqrt{x}\cdot 2x}{(x^2+4)^2}=\frac{x^2+4-4x^2}{2\sqrt{x}(x^2+4)^2}=\frac{-3x^2+4}{2\sqrt{x}(x^2+4)^2}$$

Теперь найдем вторую производную исходного выражения (производную от первой производной), пользуясь формулами производной дроби, произведения и производной сложной функции

$$(\frac{-3x^2+4}{2\sqrt{x}(x^2+4)^2})$$’ $$=\frac{-6x\cdot2\sqrt{x}(x^2+4)^2-(-3x^2+4)\cdot[\frac{(x^2+4)^2}{\sqrt{x}}+2\sqrt{x}\cdot2(x^2+4)\cdot2x]}{4x(x^2+4)^4}=$$

$$=\frac{-12x\sqrt{x}(x^2+4)^2-(-3x^2+4)\cdot\frac{(x^2+4)^2+8x^2(x^2+4)}{\sqrt{x}}}{4x(x^2+4)^4}=$$

$$=\frac{-12x^2(x^2+4)^2-(-3x^2+4)(x^2+4)(x^2+4+8x^2)}{4x\sqrt{x}(x^2+4)^4}=$$

$$=\frac{-12x^2(x^2+4)+(4-3x^2)(9x^2+4)}{4x\sqrt{x}(x^2+4)^3}=$$

$$=\frac{-12x^4-48x^2+27x^4+12x^2-36x^2-16}{4x\sqrt{x}(x^2+4)^3}=$$

$$=\frac{15x^4-72x^2-16}{4x\sqrt{x}(x^2+4)^3}$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

Понравилось? Поделись с друзьями!