ДПА 2012. Математика. 9 клас

ДПА 2012. 9 клас. Розв’язок 2 варіанту (3 частина)

Часть третья. Вариант 2

Предлагаем Вашему вниманию решение тестовых заданий третьей части второго варианта ГИА (ДПА) по математике для девятого класса за 2012 год.

Третья часть аттестационной работы состоит из трех заданий открытой формы с развернутым ответом. Решение заданий 3.1 — 3.3 должно содержать объяснения. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. При необходимости решения иллюстрируются схемами, графиками, таблицами.

Задание 3.1

З міста А в місто В виїхав велосипедист. Через 3 год у тому самому напрямі з міста А виїхав мотоцикліст і прибув у місто В одночасно з велосипедистом. Знайдіть швидкість велосипедиста, якщо вона менша за швидкість мотоцикліста на 45 км/год, а відстань між містами дорівнює 60 км.

Решение:

Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста x-45 км/ч. Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно \frac{60}{x} ч и \frac{60}{x-45} ч.

Учитывая тот факт, что велосипедист был в пути на 3 часа дольше, чем мотоциклист, составим и решим уравнение:

\frac{60}{x-45}-\frac{60}{x}=3,\;x\neq45,\;x\neq0

\frac{60x-60x+2700-3x^2+135x}{x(x-45)}=0

x^2-45x-900=0

По теореме Виета:

x_1=-15 (посторонний корень), x_2=60.

Итак, скорость мотоциклиста 60 км/ч, значит скорость велосипедиста 60-45=15 км/ч.

Ответ: 15 км/ч.

Задание 3.2

Побудуйте графік функції y=\frac{x^2+6x+8}{x+2}-\frac{2x-x^2}{x}.

Решение:

Данная функция не определена при x=-2,\;x=0.

Упростим ее, воспользовавшись теоремой Виета, формулой разложения квадратного трехчлена на множители и вынесением общего множителя за скобки:

y=\frac{(x+4)(x+2)}{x+2}-\frac{x(2-x)}{x}=x+4-(2-x)=2x+2

Получили:

y=2x+2,\;x\neq-2,\;x\neq0

Изобразим график данной функции:

Тест ДПА 9 кл. 2012. В2. 3.2

Задание 3.3

Знайдіть площу трапеції, основи якої дорівнюють 10 см і 14 см, а бічні сторони — 13 см і 15 см.

Решение:

Тест ДПА 9 кл. 2012. В2. 3.3

ABCD — трапеция, AB=13,\;BC=10,\;CD=15,\;AD=14,\;CN — высота трапеции.

Площадь трапеции вычисляется по формуле: S_{ABCD}=\frac{BC+AD}{2}\cdot CN.

Проведем CK\parallel AB. Получили ABCK — параллелограмм, у которого

CK=AB=13,\;AK=BC=10.

Рассмотрим треугольник CKD:

CK=13,\;CD=15,\;KD=AD-AK=14-10=4CN — высота треугольника.

С одной стороны площадь треугольника равна

S=\frac{1}{2}KD\cdot CN\Rightarrow CN=\frac{2S}{KD}.

С другой стороны по формуле Герона площадь равна

S=\sqrt{p(p-a)(p-b)(p-c)},\; p=\frac{a+b+c}{2}.

p=\frac{13+15+4}{2}=16\Rightarrow S=\sqrt{16(16-13)(16-15)(16-4)}=\sqrt{16\cdot3\cdot1\cdot12}=

=\sqrt{4^2\cdot3^2\cdot2^2}=4\cdot3\cdot2=24

Тогда  CN=\frac{2\cdot24}{4}=12

S_{ABCD}=\frac{10+14}{2}\cdot12=12^2=144

Ответ: 144 см2.

Решение остальных частей: 2 часть, 4 часть.

Предлагаем пройти онлайн тесты, основанные на заданиях первой части: 1 вариант, 2 вариант, 3 вариант.

Решение других вариантов: 1 вариант (все части), 3 вариант (2 часть).

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!