ДПА 2012 з математики. 9 клас. Розв’язок 1 варіанта

Предлагаем Вашему вниманию решение 1 варианта государственной итоговой аттестации (ГИА) или на украинском державної підсумкової атестації (ДПА) по математике для 9 класса за 2012 год.

Аттестационная работа состоит из четырех частей. Эти части отличаются формой тестовых заданий и уровнем сложности.

Ученики общеобразовательных классов выполняют все задания первой, второй и третьей частей аттестационной работы.

Ученики классов с углубленным изучением математики выполняют задания всех четырех частей аттестационной работы.

Государственная итоговая аттестация (ГИА) по математике проводится на протяжении 3 академических часов для учеников общеобразовательных классов и 4 академических часов для учеников классов с углубленным изучением математики.

Часть первая

В каждом из 12 заданий первой части по четыре варианта ответов, из которых только ОДИН ответ ПРАВИЛЬНЫЙ.

Отметьте правильные, на Ваш взгляд, ответы и нажмите Завершить тест. После этого нажмите кнопку Показать вопросы, чтобы ознакомиться с решением для тех заданий, где Вы допустили ошибку. Желаем удачи в прохождении теста.

Часть вторая

Вторая часть аттестационной работы состоит из четырех заданий открытой формы с коротким ответом.

Задания 2.1 — 2.4

2.1 Обчисліть $$3\sqrt{1\frac{4}{9}}\cdot\sqrt{1\frac{3}{13}}-\sqrt{(-4)^6}.$$

Решение:

Воспользуемся свойствами корней и степеней

$$3\sqrt{1\frac{4}{9}}\cdot\sqrt{1\frac{3}{13}}-\sqrt{(-4)^6}=3\sqrt{\frac{13}{9}\cdot\frac{16}{13}}-\sqrt{4^6}=\frac{3\sqrt{16}}{\sqrt{9}}-4^3=4-4^3=$$

$$=4(1-16)=-60$$

Ответ: $$-60.$$

2.2 Графіком квадратичної функції є парабола, що має вершину у початку координат і проходить через точку А(2; -8). Задайте цю функцію формулою.

Решение:

Так как парабола проходит через начало координат, то ее уравнение может быть задано в виде $$y=ax^2$$

Подставим в уравнение координаты точки А

$$-8=a\cdot2^2\Rightarrow a=-2$$

Получили уравнение искомой функции: $$y=-2x^2$$

Ответ: $$y=-2x^2$$

2.3 Розв’яжіть систему рівнянь

$$\left\{\begin{matrix} x^2-2xy+y^2=9\\ 2x-y= 5\end{matrix}\right.$$

Решение:

Левую часть первого уравнения свернем по формуле квадрат разности

Во втором уравнении выразим $$y$$

$$\left\{\begin{matrix} (x-y)^2 = 9\\ y = 2x- 5 \end{matrix}\right.$$

Подставим $$y$$ из второго уравнения в первое

$$(x-2x+5)^2=9$$

$$(5-x)^2=9$$

$$25+x^2-10x=9$$

$$x^2-10x+16=0$$

По теореме Виета получим

$$x_1=2,\;x_2=8$$

1) $$x_1=2\Rightarrow y_1=-1$$

2) $$x_2=8\Rightarrow y_2=11$$

Ответ: $$x_1=2,\;y_1=-1;\;x_2=8,\;y_2=11.$$

2.4 Зовнішній кут правильного многокутника становить $$\frac{1}{5}$$ внутрішнього. Знайдіть кількість сторін цього многокутника.

Решение:

Пусть $$\alpha$$ — внутренний угол, а $$\beta$$ — внешний. $$\beta=\pi-\alpha$$

По условию $$\beta=\frac{1}{5}\alpha$$

$$\frac{1}{5}\alpha=\pi-\alpha\Rightarrow \alpha=\frac{5\pi}{6}$$

Сумма внутренних углов правильного многоугольника равна $$n\cdot\alpha$$, где $$n$$ — количество сторон. Сумма внутренних углов плоского выпуклого $$n$$-угольника равна $$(n-2)\pi.$$

$$(n-2)\pi=n\cdot\frac{5\pi}{6}$$

$$n-2=\frac{5}{6}n$$

$$\frac{1}{6}n=2$$

$$n=12$$

Ответ: 12

Часть третья

Третья часть аттестационной работы состоит из трех заданий открытой формы с развернутым ответом. Решение заданий 3.1 — 3.3 должно содержать объяснения. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. При необходимости решения иллюстрируются схемами, графиками, таблицами.

Задания 3.1 — 3.3

3.1 Автомобіль мав проїхати 1200 км із певною запланованою швидкістю. Після того, як він проїхав третину шляху із цією швидкістю, автомобіль витратив на зупинку 2 год. Збільшивши швидкість на 20 км/год, автомобіль прибув у пункт призначення вчасно. Якою була швидкість автомобіля до зупинки?

Решение:

$$S=1200$$ км

По условию задачи автомобиль проехал треть пути, сделал остановку на 2 часа и продолжил путь с увеличенной скоростью.

$$S_1=\frac{S}{3}=400,\;S_2=S-S_1=800,\;v_1=v,\;v_2=v+20,\;v>0$$

Найдем время, за которое автомобиль проехал первую и вторую часть пути

$$S_1=v_1\cdot t_1\Rightarrow 400=v\cdot t_1\Rightarrow t_1=\frac{400}{v}$$

$$S_2=v_2\cdot t_2\Rightarrow 800=(v+20)\cdot t_2\Rightarrow t_2=\frac{800}{v+20}$$

Найдем общее время

$$t=t_1+2+t_2=\frac{400}{v}+2+\frac{800}{v+20}$$

Подставим общее время в формулу для нахождения расстояния

$$S=v\cdot t$$

$$v\cdot\left ( \frac{400}{v}+2+\frac{800}{v+20} \right )=1200$$

Упростим полученное уравнение

$$400+2v+\frac{800v}{v+20}=1200$$

$$2v+\frac{800v}{v+20}=800$$

$$v+\frac{400v}{v+20}=400$$

$$v\cdot(v+20)+400v=400(v+20)$$

$$v^2+20v+400v=400v+8000$$

Получили квадратное уравнение относительно первоначальной скорости

$$v^2+20v-8000=0$$

Найдем корни по теореме Виета:

$$v=-100$$ (посторонний корень) и $$v=80$$

Ответ: 80 км/час

3.2 Доведіть, що значення виразу

$$\left ( \frac{3-a}{a^2-2a+1} -\frac{2}{1-a}\right )\left ( \frac{a^2-3a}{a^3+3a^2+3a+1} +\frac{1}{a^2+2a+1}\right )$$

є додатним при всіх допустимих значеннях змінної.

Доказательство:

Упростим первоначальное выражение.

Воспользуемся формулами сокращенного умножения: квадрат разности, куб суммы и квадрат суммы

$$\left ( \frac{3-a}{(a-1)^2} -\frac{2}{1-a}\right )\left ( \frac{a^2-3a}{(a+1)^3} +\frac{1}{(a+1)^2}\right )=$$

Приведем дроби к общему знаменателю

$$=\frac{3-a+2(a-1)}{(a-1)^2}\cdot \frac{a^2-3a+a+1}{(a+1)^3}=$$

$$a\neq\pm1$$

Раскроем скобки и приведем подобные слагаемые

$$=\frac{a+1}{(a-1)^2}\cdot \frac{a^2-2a+1}{(a+1)^3}=$$

Опять воспользуемся формулой квадрат разности и после этого сократим дроби

$$=\frac{a+1}{(a-1)^2}\cdot \frac{(a-1)^2}{(a+1)^3}=\frac{1}{(a+1)^2}$$

Получили $$\frac{1}{(a+1)^2}>0,\;a\neq\pm1$$

ч.т.д.

3.3 Бісектриса гострого кута паралелограма ділить його сторону у відношенні 3:4, рахуючи від вершин тупого кута. Периметр паралелограма дорівнює 80 см. Знайдіть довжини його сторін.

Решение:

 ДПА 2012. Математика. 9 клас. Вариант 1. Задание 3.3

$$\frac{BE}{EC}=\frac{3}{4}\Rightarrow BE=3x,\;EC=4x,\;x$$ — коэффициент пропорциональности.

Тогда $$BC=3x+4x=7x.$$

$$\angle BAE=\angle EAD$$ так как $$AE$$ — биссектриса, $$\angle BEA=\angle EAD$$ как внутренние накрест лежащие при параллельных прямых $$AD,$$ $$BC$$ и секущей $$AE.$$ Значит треугольник $$ABE$$ является равнобедренным, то есть $$AB=BE=3x.$$

Найдем сумму двух сторон из периметра параллелограмма

$$P=2(AB+BC)=80\Rightarrow AB+BC=40$$

Получили $$AB+BC=3x+7x=10x\Rightarrow 10x=40\Rightarrow x=4$$

$$AB=12,\;BC=28$$

Ответ: 12 см; 28 см; 12 см; 28 см.

Часть четвертая

Четвертая часть аттестационной работы состоит из двух заданий открытой формы с развернутым ответом. Решение заданий 4.1 — 4.2 должно содержать объяснения. В нем необходимо записать последовательные логические действия и объяснения, сослаться на математические факты, из которых следует то или иное утверждение. При необходимости решения иллюстрируются схемами, графиками, таблицами.

Задания 4.1 — 4.2

4.1 При яких значеннях параметра $$a$$ рівняння $$\left |x^2-4|x|+3 \right |=a$$ має шість розв’язків?

Решение:

Рассмотрим две функции $$y=\left |x^2-4|x|+3 \right |$$ и $$y=a.$$ Пересечение графиков данных функций в шести точках и будет решением  задания.

Построим график первой функции $$y=\left |x^2-4|x|+3 \right |.$$

Для этого сначала построим график функции $$y=x^2-4x+3$$ при $$x\geqslant 0.$$ Это парабола $$y=(x-2)^2-1$$ с вершиной в точке $$(2;-1),$$ ветви которой направлены вверх.

Так как функция $$y=x^2-4|x|+3$$ является четной функцией, то отобразим график функции $$y=x^2-4x+3$$ при $$x\geqslant 0$$ относительно оси $$Oy$$ (оси ординат).

Для построения графика функции $$y=\left |x^2-4|x|+3 \right |$$ необходимо отобразить относительно оси $$Ox$$ ту часть графика функции $$y=x^2-4|x|+3,$$ которая ниже оси абсцисс.

$$y=a$$ — прямая, параллельная оси абсцисс.

ДПА 2012. Математика. 9 клас. Вариант 1. Задание 4.1

При $$a=1$$ уравнение  $$\left |x^2-4|x|+3 \right |=a$$ имеет шесть решений.

Ответ:  $$a=1.$$

4.2 Знайдіть площу трикутника, якщо дві його сторони дорівнюють 1 см і $$\sqrt{15}$$ см, а медіана, яка проведена до третьої сторони, дорівнює 2 см.

Решение:

Введем обозначения: $$a,\;b,\;c$$ — стороны треугольника, $$m_c$$ — медиана к стороне $$c.$$ Тогда $$a=1,\;b=\sqrt{15},\;m_c=2.$$

Вспомним соотношение в произвольном треугольнике для медианы

$$m_c=\frac{\sqrt{2a^2+2b^2-c^2}}{2}$$

Найдем $$c$$

$$4m_c^2=2a^2+2b^2-c^2\Rightarrow c^2=2a^2+2b^2-4m_c^2$$

$$c=\sqrt{2a^2+2b^2-4m_c^2}=\sqrt{2\cdot1+2\cdot15-4\cdot4}=\sqrt{16}=4$$

Получили соотношение $$c^2=a^2+b^2,$$ то есть треугольник прямоугольный ($$\angle C=90^{\circ}$$).

Вспомним формулу площади для прямоугольного треугольника

$$S=\frac{1}{2}ab$$

Подставим значения сторон и найдем площадь

$$S=\frac{\sqrt{15}}{2}$$

Ответ: $$\frac{\sqrt{15}}{2}$$ см2

Предлагаем пройти онлайн тесты, основанные на заданиях первой части: 1 вариант, 2 вариант, 3 вариант.


Решения других вариантов: вариант 2 (части 2, 3, 4), 3 вариант (2 часть).

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!