ВНО 2010 по математике [задания 25-30]

Задание 25
На рисунку зображено ескіз графіка функції $$y=ax^2+bx+c.$$
Укажіть правильне твердження щодо коефіцієнтів $$a, b, c.$$

А

Б

В

Г

Д

$$\left\{\begin{matrix} a<0,\\ b<0, \\ c=0. \end{matrix}\right.$$

$$\left\{\begin{matrix} a>0,\\ b<0, \\ c>0. \end{matrix}\right.$$

$$\left\{\begin{matrix} a>0,\\ b>0, \\ c=0. \end{matrix}\right.$$

$$\left\{\begin{matrix} a<0,\\ b>0, \\ c<0. \end{matrix}\right.$$

$$\left\{\begin{matrix} a<0,\\ b>0, \\ c=0. \end{matrix}\right.$$

Решение:

$$y=ax^2+bx+c$$ — парабола.

  • при $$a>0$$ ветви параболы направлены вверх, при $$a<0$$ — вниз.

Так как ветви нашей параболы направлены вниз, то $$a<0$$

  • если $$a$$ и $$b$$ с одинаковыми знаками, то вершина параболы расположена в левой полуплоскости; если знаки разные, то в правой полуплоскости.

Так как вершина расположена в правой полуплоскости и $$a<0,$$ то получаем $$b>0$$

  • $$c=y(0)$$

Одна из точек пересечения $$(0;0),$$ т.е $$y(0)=0,$$ а значит $$c=0$$

Ответ: Д.


Задание 26
Установіть відповідність між числом (1-4) та множиною, до якої воно належить (А-Д).

1  $$-8$$ А множина парних натуральних чисел
2  23 Б множина цілих чисел, що не є натуральними числами
3  $$\sqrt{16}$$ В множина раціональних чисел, що не є цілими числами
4  1.7 Г множина ірраціональних чисел
Д множина простих чисел

Решение:

$$-8$$ — целое, но не натуральное

23 — простое число

$$\sqrt{16}=4$$ — четное натуральное число

1.7 — рациональное дробное число

Ответ: 1-Б, 2-Д, 3-А, 4-В.


Задание 27
Установіть відповідність між функціями, заданими формулами (1-4), та їхніми властивостями (А-Д).

1  $$y=x^3$$ А областю визначення функції є проміжок $$[0;\infty)$$
2  $$y=\cos x$$ Б функція спадає на інтервалі $$(0;\infty)$$
3  $$y=\text{tg}\, x$$ В функція зростає на інтервалі $$(-\infty;\infty)$$
4  $$y=\log_{0.2} x$$ Г парна функція
Д пріодична функція з найменшим періодом $$T=\pi$$

 Решение:

$$y=x^3$$ — возрастает на интервале $$(-\infty;\infty)$$

$$y=\cos x$$ — периодическая четная функция

$$y=\text{tg}\, x$$ — периодическая с наименьшим периодом $$T=\pi$$

$$y=\log_{0.2} x$$ — (основание меньше единицы) убывает на интервале $$(0;\infty)$$

Ответ: 1-В, 2-Г, 3-Д, 4-Б.


Задание 28
На рисунку зображено прямокутну систему координат у просторі, на осях якої позначено точки $$K,L,M,N.$$ Установіть відповідність між точками $$K,L,M,N$$ (1-4) та їхніми можливими координатами (А-Д).

1  $$K$$ А $$(-3;0;0)$$
2  $$L$$ Б  $$(0;-3;0)$$
3  $$M$$ В  $$(0;0;-3)$$
4  $$N$$ Г  $$(0;0;3)$$
Д  $$(0;3;0)$$

Решение:

 

координаты записываются следующим образом: $$(x;y;z)$$

$$K(0;-3;0), L(0;0;3), M(-3;0;0), N(0;3;0)$$

Ответ: 1-Б, 2-Г, 3-А, 4-Д.


Задание 29
Знайдіть значення виразу $$\frac{m+4}{m^2-6m+9}\cdot \frac{2m-6}{m^2-16}-\frac{2}{m-4},$$ якщо $$m=4.25.$$

Решение:

$$\frac{m+4}{(m-3)^2}\cdot \frac{2m-6}{(m-4)(m+4)}-\frac{2}{m-4}=\frac{2}{(m-3)(m-4)}-\frac{2}{m-4}=$$

$$=\frac{2-2m+6}{(m-3)(m-4)}=\frac{2(4-m)}{(m-3)(m-4)}=\frac{2}{3-m}$$

подставим $$m=4.25$$

$$\frac{2}{3-4.25}=-1.6$$

Ответ: $$-1.6.$$


Задание 30
Одним із мобільних операторів було запроваджено акцію «Довше розмовляєшь — менше платиш» з такими умовами: плата за з’єднання відсутня; за першу хвилину розмови абонент сплачує 30 коп, а за кожну наступну хвилину розмови —  на 3 коп менше, ніж за попередню;  плата за одинадцяту та всі наступні хвилини розмови не нараховується; умови дійсні для дзвінків абонентам усіх мобільних операторів країни. Скільки за умовами акції коштуватиме абоненту цього мобільного оператора розмова тривалістю 8 хвилин (у грн)?

Решение:

Задача на арифметическую прогрессию.

Воспользуемся формулой суммы первых $$n$$ членов арифметической прогрессии в таком виде:

$$S_{n}=\frac{2a_{1}+d(n-1)}{2}\cdot n$$

В нашем случае: $$a_{1}=30, d=-3, n=8$$

$$S_{8}=\frac{2\cdot30+(-3)(8-1)}{2}\cdot 8=156$$ (коп)$$=1.56$$ (грн)

Ответ: 1.56 грн.

Также рекомендуем ознакомиться с решениями ВНО (ЗНО) по математике за 2008—2012 годы:

На нашем сайте Вы можете бесплатно скачать бланки с ответами ВНО (ЗНО) по математике.

Вы можете проверить свои знания в онлайн тестах по математике.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!