ЗНО 2013 по математике. 1 сессия

ЗНО 2013 по математике (1 сессия). 24 задание

Задание 24

На рисунку зображено графік функції $$y=f(x),$$ визначеної на проміжку $$[0;11]$$ та диференційованої на проміжку $$(0;11).$$ Установіть відповідність між числом (1-4) та проміжком (А-Д), якому належить це число.

ЗНО 2013 по математике. 1 сессия. Задание 24

Число

1. найменше значення функції $$y=f(x)$$ на її області визначення

2. $$\int\limits_{1}^{3}f(x)dx$$

3. $$f(8)$$

4. $$f'(7)$$

Проміжок

А. $$(-\infty;-2]$$

Б. $$(-2;-0.5]$$

В. $$(-0.5;2]$$

Г. $$(2;4]$$

Д. $$(4;\infty)$$

Решение:

1. Наименьшее значение функции на ее области определения $$[0;11]$$ равно $$y=-3.5\in(-\infty; -2],$$ то есть получили соответствие 1-А.

2. $$ -2< \int\limits_{1}^{3}f(x)dx < 0,$$ т.е. $$\int\limits_{1}^{3}f(x)dx \in(-2;-0.5]$$ и получили соответствие 2-Б.

3. $$f(8)=3.5\in(2;4],$$ то есть получили соответствие 3-Г.

4. Так как касательная к графику функции при $$x=7$$ параллельна оси $$Ox,$$ то $$f'(7)=k=\text{tg}\,\alpha=0\in(-0.5;2]$$ и получили соответствие 4-В.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!