Рациональные корни многочлена с целыми коэффициентами

Предлагаем вспомнить материал по теме: Многочлены

Теорема

Если многочлен $$\text{P}_{n}(x)=\text{a}_{n}x^n+\text{a}_{n-1}x^{n-1}+$$…$$+\text{a}_{2}x^2+\text{a}_{1}x+\text{a}_0$$ с целыми коэффициентами имеет рациональный корень $$x_0=\frac{p}{q},$$ то число $$p$$ является делителем числа $$\text{a}_{0}$$ (свободного члена), а число $$q$$ является делителем числа $$\text{a}_n$$ (старшего коэффициента).

Пример

Найти рациональные корни многочлена $$4x^4-16x^3+3x^2+4x-1=0.$$

Решение

Рациональные корни уравнения, если они есть, находятся среди чисел: $$\pm\frac{1}{2};\pm\frac{1}{4}.$$

Осталось лишь проверить, подстановкой в исходное уравнение:

$$P(\frac{1}{2})=4\cdot(\frac{1}{2})^4-16\cdot(\frac{1}{2})^3+3\cdot(\frac{1}{2})^2+4\cdot\frac{1}{2}-1=\frac{1}{4}-2+\frac{3}{4}+2-1=0$$

$$P(-\frac{1}{2})=4\cdot(-\frac{1}{2})^4-16\cdot(-\frac{1}{2})^3+3\cdot(-\frac{1}{2})^2-4\cdot\frac{1}{2}-1=\frac{1}{4}+2+\frac{3}{4}-2-1=0$$

$$P(\frac{1}{4})=4\cdot(\frac{1}{4})^4-16\cdot(\frac{1}{4})^3+3\cdot(\frac{1}{4})^2+4\cdot\frac{1}{4}-1=\frac{1}{64}-\frac{1}{4}+\frac{3}{16}+1-1\neq0$$

$$P(-\frac{1}{4})=4\cdot(-\frac{1}{4})^4-16\cdot(-\frac{1}{4})^3+3\cdot(-\frac{1}{4})^2-4\cdot\frac{1}{4}-1\neq0$$

Т.о., нашли два рациональных корня $$x_1=\frac{1}{2}$$ и $$x_2=-\frac{1}{2}$$

Ответ: $$\pm\frac{1}{2}$$

Поделиться

Больше материалов

Решение простейших тригонометрических уравнений

Предлагаем ознакомится с материалами по тригонометрии: Определение тригонометрических функций, Свойства обратных тригонометрических функций, Значения обратных тригонометрических функций. В общем...

Котангенсоида

Котангенс $$y=text{ctg}x.$$ Функция определена при любом $$x,$$ за исключением точек вида $$pi k, kinmathbb{Z}.$$ Область значений $$yin(-infty;infty).$$ Котангенс -...

Тангенсоида

Тангенсом называется функция вида $$f(x)=text{tg}x.$$ Область определения $$D(f)$$ - множество действительных чисел за исключением чисел вида $$frac{pi}{2}+pi k, kinmathbb{Z},$$...

Определенный интеграл и его свойства

Неформально говоря, определённый интеграл является площадью криволинейной трапеции. Геометрический смысл определенного интеграла Определённый интеграл $$intlimits_{a}^{b}f(x),dx$$...

Тригонометрические функции двойного, половинного и тройного аргументов

Синус двойного угла: $$sin 2alpha=2sinalphacosalpha=frac{2text{tg}alpha}{1+text{tg}^2alpha}$$ Косинус двойного угла: $$cos 2alpha=cos^2alpha-sin^2alpha=1-2sin^2alpha=2cos^2alpha-1=frac{1-text{tg}^2alpha}{1+text{tg}^2alpha}$$

Материалы по теме

ДПА 2017. Математика. 9 клас. Видавництво Ранок. Варіант 1. Третя частина

Завдання та розв'язки третьої частини першого варіанта зі збірника завдань для проведення Державної підсумкової атестації 2017. Видавництво Ранок.

ДПА 2017. Математика. 9 клас. Видавництво Ранок. Варіант 1. Друга частина

Завдання та розв'язки другої частини першого варіанта зі збірника завдань для проведення Державної підсумкової атестації 2017. Видавництво Ранок.

Задание 56 (прогрессии)

Докажите, что если положительные числа $$a$$, $$b$$, $$c$$ образуют арифметическую прогрессию, то числа $$\frac{1}{\sqrt{b}+\sqrt{c}}$$, $$\frac{1}{\sqrt{a}+\sqrt{c}}$$, $$\frac{1}{\sqrt{b}+\sqrt{a}}$$ также образуют арифметическую прогрессию.

29 задание пробного ЗНО 2015

Решение 29 тестового задания пробного ЗНО 2015 по математике..

22 задание пробного ЗНО 2015

Решение 22 задания пробного ЗНО 2015 по математике..

21 задание ЗНО 2014

Решение 21 задания ЗНО 2014 по математике..

Показательные и логарифмические уравнения

Онлайн тест на тему "Показательные и логарифмические уравнения". Бесплатно, без смс и регистрации..

Задание №17 пробного ЗНО 2015

Решение 17 тестового задания пробного внешнего независимого оценивания 2015 по математике..

16 задание пробного ЗНО 2015

Решение 16 тестового задания пробного внешнего независимого оценивания 2015 по математике..

6-10 задания пробного ЗНО 2015

Решение с 6 по 10 задание пробного ЗНО 2015 по математике..