Скалярний добуток векторів

Скалярний добуток векторів

Скалярним добутком векторів $$\vec{a}$$ і $$\vec{b}$$ називається число, яке дорівнює добутку довжин цих векторів на косинус кута між ними.

$$\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos \angle\left ( \vec{a},\vec{b} \right )$$

Властивості скалярного добутку:

  1. $$\vec{a}\cdot\vec{a}=|\vec{a}|^2.$$
  2. $$\vec{a}\cdot\vec{b}=0,$$  якщо $$\vec{a}\perp \vec{b}$$ або $$\vec{a}=0,$$ або $$\vec{b}=0.$$
  3. $$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}.$$
  4. $$\vec{a}\cdot\left (\vec{b}+\vec{c} \right )=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}.$$
  5. $$\left (\lambda\vec{a} \right )\cdot\vec{b}=\vec{a}\cdot\left (\lambda\vec{b} \right )=\lambda(\vec{a}\cdot\vec{b}).$$

В декартовій системі координат

$$\vec{a}=\left \{ x_{a},\;y_{a},\;z_{a} \right \},\;\vec{b}=\left \{ x_{b},\;y_{b},\;z_{b} \right \}$$

$$\vec{a}\cdot\vec{b}=x_{a}x_{b}+y_{a}y_{b}+z_{a}z_{b}$$

$$\cos\angle\left (\vec{a},\vec{b} \right )=\frac{x_{a}x_{b}+y_{a}y_{b}+z_{a}z_{b}}{\sqrt{x_{a}^2+y_{a}^2+z_{a}^2}\cdot\sqrt{x_{b}^2+y_{b}^2+z_{b}^2}}$$

Приклад.

Знайти $$\left ( 5\vec{a}+3\vec{b} \right )\left ( 2\vec{a}-\vec{b} \right ),$$ якщо $$|\vec{a}|=2,\;|\vec{b}|=3,\;\vec{a}\perp\vec{b}.$$

Розв’язування.

$$\left ( 5\vec{a}+3\vec{b} \right )\left ( 2\vec{a}-\vec{b} \right )=10\vec{a}\cdot\vec{a}-5\vec{a}\cdot\vec{b}+6\vec{b}\cdot\vec{a}-3\vec{b}\cdot\vec{b}=10|\vec{a}|^2+\vec{a}\cdot\vec{b}-3|\vec{b}|^2=$$

$$=10\cdot2^2+0-3\cdot3^2=40-27=13$$

Приклад.

Знайти $$\angle(\vec{a},\vec{b})$$, якщо $$\vec{a}(1;2;3),\;\vec{b}(6;4;-2)$$

Розв’язування.

$$\cos\angle(\vec{a},\vec{b})=\frac{1\cdot6+2\cdot4+3\cdot(-2)}{\sqrt{1+4+9}\cdot\sqrt{36+16+4}}=\frac{8}{\sqrt{14}\cdot\sqrt{56}}=\frac{8}{\sqrt{14}\cdot2\sqrt{14}}=$$

$$=\frac{4}{14}=\frac{2}{7}$$

$$\angle(\vec{a},\vec{b})=\text{arcccos}\frac{2}{7}\approx 73^\circ{24}^{\prime}$$

Приклад. При якому значенні $$m$$ вектори $$\vec{a}=\left \{ m;1;0 \right \}$$  і $$\vec{b}=\left \{ 3;-3;-4 \right \}$$ перпендикулярні?

Розв’язування.

$$\vec{a}\cdot\vec{b}=m\cdot3+1\cdot(-3)+0\cdot(-4)=3m-3=0\Rightarrow m=1$$

Поделиться

Больше материалов

Розв’язування систем лінійних рівнянь

Прежде чем приступать к рассмотрению данной темы, рекомендуем ознакомиться с элементами теории определителей и матриц. Основні означення

Питання існування розв’язків систем лінійних рівнянь

Розглянемо систему лінійних рівнянь СЛР в загальному вигляді $$left{begin{matrix} a_{11}x_{1} & + & a_{12}x_{2} &...

Пряма лінія на площині

Рівняння лінії в системі координат Всякій лінії на площині $$XOY$$, яка розглядається як геометричне місце точок, відповідає деяке рівняння,...

Вступні означення, зміст та властивості лінійних операцій над векторами

Вектором називається направлений відрізок (упорядкована пара точок). До векторів належить також і нульовий вектор, початок і кінець...

Рівняння площини у просторі

Виклад теорії ведеться на векторній основі, що не тільки ефективно гарантує засвоєння матеріалу з геометрії, але і сприяє опануванню основ векторної алгебри.

Материалы по теме

6-10 задания пробного ЗНО 2015

Решение с 6 по 10 задание пробного ЗНО 2015 по математике..

Пробное ЗНО 2014 по математике. Задание 9

Решение 9 задания пробного ЗНО 2014 по математике..

ЗНО 2013 по математике (2 сессия). 23 задание

В прямоугольной системе координат на плоскости даны векторы $$vec{a}(3;4)$$ и $$vec{b}(-2;2).$$ Каждому...

ЗНО 2013 по математике (2 сессия). 15 задание

На координатной плоскости $$xy$$ изображена окружность, центр которой совпадает с началом координат...

ЗНО 2013 по математике (1 сессия). 22 задание

Задание 22 У прямокутній системі координат на площині...

Мішаний добуток векторів

Мішаний добуток векторів Мішаним добутком векторів $$vec{a},;vec{b},;vec{c}$$ називається...

Векторний добуток векторів

Векторний добуток векторів Векторним добутком векторів $$vec{a}$$ і...

Вступні означення, зміст та властивості лінійних операцій над векторами

Вектором називається направлений відрізок (упорядкована пара точок)....

Системи координат

Для визначення положення довільної точки використовуються різні системи координат. Положення точки у...

Питання існування розв’язків систем лінійних рівнянь

Розглянемо систему лінійних рівнянь СЛР в загальному вигляді