Тригонометрические функции двойного, половинного и тройного аргументов

Синус двойного угла:

$$\sin 2\alpha=2\sin\alpha\cos\alpha=\frac{2\text{tg}\alpha}{1+\text{tg}^2\alpha}$$

Косинус двойного угла:

$$\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1=\frac{1-\text{tg}^2\alpha}{1+\text{tg}^2\alpha}$$

Тангенс двойного угла:

$$\text{tg} 2\alpha=\frac{2\text{tg}\alpha}{1-\text{tg}^2\alpha}=\frac{2}{\text{ctg}\alpha-\text{tg}\alpha}$$

Модуль синуса половинного угла:

$$\left |\sin\frac{\alpha}{2} \right |=\sqrt{\frac{1-\cos\alpha}{2}}$$

Модуль косинуса половинного угла:

$$\left |\cos\frac{\alpha}{2} \right |=\sqrt{\frac{1+\cos\alpha}{2}}$$

Модуль тангенса половинного угла:

$$\left |\text{tg}\frac{\alpha}{2} \right |=\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

Модуль котангенса половинного угла:

$$\left |\text{ctg}\frac{\alpha}{2} \right |=\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$$

Тангенс половинного угла:

$$\text{tg}\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$$

Котангенс половинного угла:

$$\text{ctg}\frac{\alpha}{2}=\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}$$

Синус тройного угла:

$$\sin3\alpha=\sin\alpha(3-4\sin^2\alpha)$$

Косинус тройного угла:

$$\cos3\alpha=\cos\alpha(4\cos^2\alpha-3)$$

Тангенс тройного угла:

$$\text{tg}3\alpha=\frac{3\text{tg}\alpha-\text{tg}^3\alpha}{1-3\text{tg}^2\alpha}$$

Котангенс тройного угла:

$$\text{ctg}3\alpha=\frac{\text{ctg}^3\alpha-3\text{ctg}\alpha}{3\text{ctg}^2\alpha-1}$$

Поделиться

Больше материалов

Степени и корни. Их свойства

$$a^x$$ называется степенью с основанием $$a$$ и показателем $$x,$$ если $$a$$ перемножается само на себя $$x$$ разСвойства степеней:

Тригонометрические функции суммы и разности углов

Синус суммы углов: $$sin(x+y)=sin xcos y+cos xsin y$$ Синус разности углов:

Тангенсоида

Тангенсом называется функция вида $$f(x)=text{tg}x.$$ Область определения $$D(f)$$ - множество действительных чисел за исключением чисел вида $$frac{pi}{2}+pi k, kinmathbb{Z},$$...

Многочлены

Одночлены. Многочлены. Деление многочленов. Теорема Безу. Схема Горнера. Разложение многочленов на множители.

Определенный интеграл и его свойства

Неформально говоря, определённый интеграл является площадью криволинейной трапеции. Геометрический смысл определенного интеграла Определённый интеграл $$intlimits_{a}^{b}f(x),dx$$...

Материалы по теме

22 задание пробного ЗНО 2015

Решение 22 задания пробного ЗНО 2015 по математике..

21 задание ЗНО 2014

Решение 21 задания ЗНО 2014 по математике..

21 задание пробного ЗНО 2015

Решение 21 задания пробного ЗНО 2015 по математике..

13 задание пробного ЗНО 2015

Решение 13 тестового задания по математике пробного ЗНО 2015..

Тригонометрические выражения

Пройдите онлайн тест по теме "Тригонометрические выражения" и узнайте, насколько Вы подготовлены к ДПА и ЗНО..

Задание 52

Задание на доказательство. Преобразование суммы тригонометрических функций в произведение..

14 задание ЗНО 2014

Решение 14 задание ЗНО 2014 по математике..

ЗНО 2013 по математике (2 сессия). 28 задание

Решение ЗНО 2013 по математике (2 сессия). 28 задание...
Предыдущий материалСкалярний добуток векторів
Следующий материалВекторний добуток векторів