ВНО 2010 по математике [задания 25-30]

Задание 25

На рисунку зображено ескіз графіка функції $$y=ax^2+bx+c.$$
Укажіть правильне твердження щодо коефіцієнтів $$a, b, c.$$

АБВГД
$$\left\{\begin{matrix} a<0,\\ b<0, \\ c=0. \end{matrix}\right.$$$$\left\{\begin{matrix} a>0,\\ b<0, \\ c>0. \end{matrix}\right.$$$$\left\{\begin{matrix} a>0,\\ b>0, \\ c=0. \end{matrix}\right.$$$$\left\{\begin{matrix} a<0,\\ b>0, \\ c<0. \end{matrix}\right.$$$$\left\{\begin{matrix} a<0,\\ b>0, \\ c=0. \end{matrix}\right.$$

Решение:

$$y=ax^2+bx+c$$ — парабола.

  • при $$a>0$$ ветви параболы направлены вверх, при $$a<0$$ — вниз.

Так как ветви нашей параболы направлены вниз, то $$a<0$$

  • если $$a$$ и $$b$$ с одинаковыми знаками, то вершина параболы расположена в левой полуплоскости; если знаки разные, то в правой полуплоскости.

Так как вершина расположена в правой полуплоскости и $$a<0,$$ то получаем $$b>0$$

  • $$c=y(0)$$

Одна из точек пересечения $$(0;0),$$ т.е $$y(0)=0,$$ а значит $$c=0$$

Ответ: Д.

Задание 26

Установіть відповідність між числом (1-4) та множиною, до якої воно належить (А-Д).

1 $$-8$$Амножина парних натуральних чисел
2 23Бмножина цілих чисел, що не є натуральними числами
3 $$\sqrt{16}$$Вмножина раціональних чисел, що не є цілими числами
4 1.7Гмножина ірраціональних чисел
  Дмножина простих чисел

Решение:

$$-8$$ — целое, но не натуральное

23 — простое число

$$\sqrt{16}=4$$ — четное натуральное число

1.7 — рациональное дробное число

Ответ: 1-Б, 2-Д, 3-А, 4-В.

Задание 27

Установіть відповідність між функціями, заданими формулами (1-4), та їхніми властивостями (А-Д).

1 $$y=x^3$$Аобластю визначення функції є проміжок $$[0;\infty)$$
2 $$y=\cos x$$Бфункція спадає на інтервалі $$(0;\infty)$$
3 $$y=\text{tg}\, x$$Вфункція зростає на інтервалі $$(-\infty;\infty)$$
4 $$y=\log_{0.2} x$$Гпарна функція
  Дпріодична функція з найменшим періодом $$T=\pi$$

 Решение:

$$y=x^3$$ — возрастает на интервале $$(-\infty;\infty)$$

$$y=\cos x$$ — периодическая четная функция

$$y=\text{tg}\, x$$ — периодическая с наименьшим периодом $$T=\pi$$

$$y=\log_{0.2} x$$ — (основание меньше единицы) убывает на интервале $$(0;\infty)$$

Ответ: 1-В, 2-Г, 3-Д, 4-Б.

Задание 28

На рисунку зображено прямокутну систему координат у просторі, на осях якої позначено точки $$K,L,M,N.$$ Установіть відповідність між точками $$K,L,M,N$$ (1-4) та їхніми можливими координатами (А-Д).

1 $$K$$А$$(-3;0;0)$$
2 $$L$$Б $$(0;-3;0)$$
3 $$M$$В $$(0;0;-3)$$
4 $$N$$Г $$(0;0;3)$$
  Д $$(0;3;0)$$

Решение:

координаты записываются следующим образом: $$(x;y;z)$$

$$K(0;-3;0), L(0;0;3), M(-3;0;0), N(0;3;0)$$

Ответ: 1-Б, 2-Г, 3-А, 4-Д.

Задание 29

Знайдіть значення виразу $$\frac{m+4}{m^2-6m+9}\cdot \frac{2m-6}{m^2-16}-\frac{2}{m-4},$$ якщо $$m=4.25.$$

Решение:

$$\frac{m+4}{(m-3)^2}\cdot \frac{2m-6}{(m-4)(m+4)}-\frac{2}{m-4}=\frac{2}{(m-3)(m-4)}-\frac{2}{m-4}=$$

$$=\frac{2-2m+6}{(m-3)(m-4)}=\frac{2(4-m)}{(m-3)(m-4)}=\frac{2}{3-m}$$

подставим $$m=4.25$$

$$\frac{2}{3-4.25}=-1.6$$

Ответ: $$-1.6.$$

Задание 30

Одним із мобільних операторів було запроваджено акцію «Довше розмовляєшь — менше платиш» з такими умовами: плата за з’єднання відсутня; за першу хвилину розмови абонент сплачує 30 коп, а за кожну наступну хвилину розмови —  на 3 коп менше, ніж за попередню;  плата за одинадцяту та всі наступні хвилини розмови не нараховується; умови дійсні для дзвінків абонентам усіх мобільних операторів країни. Скільки за умовами акції коштуватиме абоненту цього мобільного оператора розмова тривалістю 8 хвилин (у грн)?

Решение:

Задача на арифметическую прогрессию.

Воспользуемся формулой суммы первых $$n$$ членов арифметической прогрессии в таком виде:

$$S_{n}=\frac{2a_{1}+d(n-1)}{2}\cdot n$$

В нашем случае: $$a_{1}=30, d=-3, n=8$$

$$S_{8}=\frac{2\cdot30+(-3)(8-1)}{2}\cdot 8=156$$ (коп)$$=1.56$$ (грн)

Ответ: 1.56 грн.

Поделиться

Обратите внимание

ВНО 2010 по математике [задания 1-6]

Задание 1 Розв'яжіть нерівність $$10-3x>4.$$ АБВГД $$(-2;infty)$$ $$(2;infty)$$$$(-3;infty)$$$$(-infty;-2)$$$$(-infty;2)$$ Решение: $$10-3x>4Rightarrow...

ВНО 2010 по математике [задания 7-12]

Задание 7 Якому з наведених проміжків належить корінь рівняння $$2^x=frac{1}{8}?$$ АБВГД $$(-6;-4]$$$$(-4;-2]$$ $$(-2;0]$$$$(0;2]$$ $$(2;4]$$

ВНО 2010 по математике [задания 13-18]

Задание 13 Спростіть вираз $$left ( 1-cos^2alpha right )text{ctg}^2alpha.$$ АБВГД $$cos^2alpha$$ $$sin2alpha$$ $$frac{sin^4alpha}{cos^2alpha}$$$$sin^2alpha$$ $$text{tg}^2alpha$$ Решение:

ВНО 2010 по математике [задания 19-24]

Задание 19 Якому з наведених проміжків належить число $$sqrt{30}?$$ АБВГД (1;2) (2;3) (3;4) (4;5) (5;6) Решение:

ВНО 2010 по математике [задания 31-36]

Решение тестовых заданий 31-36 ВНО (ЗНО) - 2010 по математике. Основное тестирование. 1 сессия.

Материалы по теме

ЗНО — 2010 з математики. 1 сесія. Онлайн тест

Пройдите онлайн тест первой сессии внешнего независимого оценивания по математике за 2010...

Тестовые задания ЗНО — 2010 (2 сессия)

Тестовые задания второй сессии ЗНО (ВНО) 2010 по математике в формате PDF

Тестовые задания ЗНО — 2010 (1 сессия)

Тестовые задания первой сессии ЗНО (ВНО) 2010 по математике в формате PDF

ВНО 2010 по математике [задания 31-36]

Решение тестовых заданий 31-36 ВНО (ЗНО) - 2010 по математике. Основное тестирование. 1 сессия.