ВНО 2011 по математике [задания 8-14]

Задание 8

Журнал коштував 25 грн. Через два місяці цей самий журнал став коштувати 21 грн. На скільки відсотків знизилася ціна журналу?

АБВГД
$$4\%$$$$\frac{4}{21}\cdot 100\%$$ $$\frac{25}{21}\cdot 100\%$$$$84\%$$ $$16\%$$

Решение:

Составим пропорцию

$$\begin{matrix} 25 = 100\%\\ (25-21) = x\% \end{matrix}$$

$$\Rightarrow x=\frac{100\%\cdot 4}{25}=16\%$$

Ответ: Д.

Задание 9

На одиничному колі зображено точку $$P(-0.8;0.6)$$ і кут $$\alpha$$ (див. рисунок). Визначте $$\cos\alpha.$$

АБВГД
 $$-0.8$$ $$0.6$$$$0.8$$$$-0.6$$$$-\frac{\sqrt{3}}{2}$$

Решение:

Из определения тригонометрических функций на единичной окружности:

$$\cos\alpha=x,$$ $$\sin\alpha=y,$$ $$\text{tg}\alpha=\frac{y}{x}, (\alpha\neq\frac{\pi}{2}+k\pi),$$ $$\text{ctg}\alpha=\frac{x}{y}, (\alpha\neq\pi k), k\in \mathbb{Z}.$$

$$x=-0.8\Rightarrow \cos\alpha=-0.8$$

Ответ: А.

Задание 10

Знайдіть градусну міру внутрішнього кута правильного десятикутника.

АБВГД
$$18^{\circ}$$$$36^{\circ}$$ $$72^{\circ}$$$$144^{\circ}$$$$162^{\circ}$$

Решение:

Сумма внутренних углов выпуклого многоугольника равна $$2d(n-2),$$ где $$d=90^{\circ},$$ $$n$$ — число вершин (сторон).

Для нахождения градусной меры внутреннего угла правильного десятиугольника общую сумму разделим на 10.

$$\frac{2\cdot 90^{\circ}\cdot (10-2)}{10}=144^{\circ}.$$

Ответ: Г.

Задание 11

Спростіть вираз $$a-|a|,$$ якщо $$a <0.$$

АБВГД
 $$2a$$ $$a$$ $$0$$$$-a$$$$-2a$$

Решение:

Т.к. $$a <0,$$ то по определению модуля  $$|a|=-a$$

$$a-|a|=a-(-a)=2a$$

Ответ: А.

Задание 12

Обїєм кулі дорівнює $$36\pi$$ см3. Знайдіть її діаметр.

АБВГД
3 см24 см6 см18 см12 см

Решение:

$$V=\frac{4}{3}\pi R^3$$

$$\frac{4}{3}\pi R^3=36\pi\Rightarrow R^3=\frac{36\cdot 3}{4}=27\Rightarrow R=\sqrt[3]{27}=3\Rightarrow D=2R=6$$

Ответ: В.

Задание 13

Визначте знаменник геометричної прогрессії $$(b_{n}),$$ якщо $$b_{9}=24, b_{6}=-\frac{1}{9}.$$

АБВГД
$$\frac{2}{\sqrt[3]{3}}$$ $$-\frac{2}{\sqrt[3]{3}}$$$$3$$ $$6$$ $$-6$$

Решение:

$$b_{n}=b_{1}\cdot q^{n-1}$$

$$b_{9}=b_{1}\cdot q^{8}$$

$$b_{6}=b_{1}\cdot q^{5}$$

$$\left\{\begin{matrix} b_{1}\cdot q^{8}=24\\ b_{1}\cdot q^{5}=-\frac{1}{9} \end{matrix}\right.$$

Разделим первое уравнение системы на второе

$$q^3=-24\cdot 9=-3^3\cdot 2^3\Rightarrow q=-\sqrt[3]{(2\cdot3)^3}=-6$$

Ответ: Д.

Задание 14

Розв’яжіть нерівність $$\frac{3x}{x+1}<\frac{7}{x+1}.$$

АБВГД
$$(-1;\frac{7}{3})$$$$(-\infty;-1)$$$$(-\infty;-1)\cup (\frac{7}{3};\infty)$$$$(-\infty;-1)\cup (-1;\frac{7}{3})$$$$(-\infty;\frac{7}{3})$$

Решение:

$$\frac{3x}{x+1}-\frac{7}{x+1}<0\Rightarrow \frac{3x-7}{x+1}<0\sim 3(x-\frac{7}{3})(x+1)<0$$

$$x\in(-1;\frac{7}{3})$$

Ответ: А.

Поделиться

Обратите внимание

ВНО 2011 по математике [задания 1-7]

Тест внешнего независимого оценивания по математике в 2011 году состоит из заданий трех форм: 25 заданий с выбором одного правильного ответа (с...

ВНО 2011 по математике [задания 15-21]

Задание 15 Обчисліть площу чотирикутника $$ABCD$$ (див. рисунок), сторони якого паралельні вісі $$Oy.$$

ВНО 2011 по математике [задания 22-28]

Задание 22 На рисунку зображено розгортку циліндра. Знайдіть його об'єм.

ВНО 2011 по математике [задания 29-35]

Задание 29 Обчисліть значення виразу $$frac{3sqrt{2}-5}{sqrt{2}-1}+frac{sqrt{24}-sqrt{300}}{sqrt{3}}.$$. Решение: $$frac{3sqrt{2}-5}{sqrt{2}-1}+frac{sqrt{24}-sqrt{300}}{sqrt{3}}=frac{3sqrt{2}-5}{sqrt{2}-1}+frac{2sqrt{2}cdotsqrt{3}-10sqrt{3}}{sqrt{3}}=$$

Материалы по теме

ЗНО — 2011 з математики. Онлайн тест

Пройдите онлайн тест внешнего независимого оценивания по математике за 2011 год, чтобы...

Тестовые задания ЗНО — 2011

Тестовые задания ЗНО (ВНО) 2011 по математике в формате PDF

ВНО 2011 по математике [задания 29-35]

Задание 29 Обчисліть значення виразу $$frac{3sqrt{2}-5}{sqrt{2}-1}+frac{sqrt{24}-sqrt{300}}{sqrt{3}}.$$.