Задание 27 (тригонометрия)

Предлагаем задание на применение формул преобразования суммы (разности) тригонометрических функций в произведение.

Задание

Найти значение выражения $$\frac{\cos24^{\circ}-\cos84^{\circ}}{\sin54^{\circ}}$$.

Решение:

Преобразуем числитель дроби по формуле разность косинусов

$$\cos24^{\circ}-\cos84^{\circ}=-2\sin\frac{24^{\circ}+84^{\circ}}{2}\sin\frac{24^{\circ}-84^{\circ}}{2}=-2\sin54^{\circ}\sin(-30^{\circ})=$$

Воспользуемся нечетностью синуса и таблицей значений тригонометрических функций

$$=2\sin54^{\circ}\sin30^{\circ}=2\cdot\sin54^{\circ}\cdot\frac{1}{2}=\sin54^{\circ}$$

Подставим полученное выражение в первоначальное

$$\frac{\cos24^{\circ}-\cos84^{\circ}}{\sin54^{\circ}}=\frac{\sin54^{\circ}}{\sin54^{\circ}}=1$$

Ответ: 1.

Поделиться

Больше заданий

Материалы по теме