Простые и составные числа. Признаки делимости

Простые и составные числа

Натуральное число $$p$$, отличное от 1, называется простым, если оно имеет только два делителя: 1 и $$p$$.

Натуральное число $$q$$, отличное от 1, называется составным, если оно помимо 1 и $$q$$ имеет еще хотя бы один делитель.

Теорема: Каждое, отличное от единицы, натуральное число разлагается на простые множители и это разложение единственно.

Таблица простых чисел (до 200)

23571113171923
293137414347535961
67717379838997101103
107109113127131137139149151
157163173179181191193197199

Число называется четным, если оно делится нацело на 2. Число называется нечетным, если оно не делится нацело на 2.

Признаки делимости

Натуральное число $$n=a_{k}a_{k-1}\ldots a_{1}a_{0}=a_{k}\cdot10^k+a_{k-1}\cdot10^{k-1}+\cdots +a_{1}\cdot10+a_{0}$$ делится…

на 2 (на 5) тогда и только тогда, когда его последняя цифра $$(a_0)$$ делится на 2 (на 5) или равна нулю

на 3 (на 9) тогда и только тогда, когда сумма всех цифр этого числа делится на 3 (на 9)

на 4 тогда и только тогда, когда число, представляемое двумя последними цифрами $$(a_{1}\cdot10+a_{0})$$ делится на 4 или последние две цифры нули

на 6 тогда и только тогда, когда оно делится на 2 и на 3

на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры $$(a_{k}a_{k-1}\ldots a_{1}-2a_{0})$$ делится на 7

на 8 тогда и только тогда, когда три его последние цифры $$(a_{2}a_{1}a_{0})$$ — нули или образуют число $$(a_{2}\cdot10^2+a_{1}\cdot10+a_{0}),$$ которое делится на 8

на 10 тогда и только тогда, когда оно оканчивается на ноль

на 11 тогда и только тогда, когда сумма цифр на нечетных местах либо равна сумме цифр на четных местах, либо отличается от нее на число, делящееся на 11

на 12 тогда и только тогда, когда оно делится на 3 и на 4

на 13 тогда и только тогда, когда это число без последней цифры $$(a_{k}a_{k-1}…a_{1}),$$ сложенное с учетверённой последней цифрой $$(4a_{0}),$$ кратно 13, т.е. $$a_{k}a_{k-1}…a_{1}+4a_{0}$$ делится на 13

на 14 тогда и только тогда, когда оно делится на 2 и на 7

на 15 тогда и только тогда, когда оно делится на 3 и на 5

на 17 тогда и только тогда, когда результат вычитания упятеренной последней цифры из этого числа без последней цифры $$(a_{k}a_{k-1}\ldots a_{1}-5a_{0})$$ делится на 17

на 19 тогда и только тогда, когда это число без последней цифры $$(a_{k}a_{k-1}…a_{1}),$$ сложенное с удвоенной последней цифрой $$(2a_{0}),$$ кратно 19, т.е. $$a_{k}a_{k-1}…a_{1}+2a_{0}$$ делится на 19

на n-ю степень двойки $$(2^n)$$ тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень

на n-ю степень пятёрки $$(5^n)$$ тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень

Проверьте свои знания в онлайн тестах по арифметике: выбор 1 правильного ответа; соответствие логических пар; числовой ответ.

Поделиться

Больше материалов

НОД и НОК чисел

Этапы нахождения НОД и НОК чисел.

Значения обратных тригонометрических функций

Рекомендуем ознакомиться со свойствами обратных тригонометрических функций и решением простейших тригонометрических уравнений. Также будет полезно ознакомиться с материалами раздела...

Основные неопределенные интегралы

Определения неопределенного интеграла и первообразной. 16 основных неопределенных интегралов..

Корни квадратного уравнения

Квадратным уравнением называется уравнение вида: $$ax^2+bx+c=0;(aneq0),$$ где $$x$$ - переменная (неизвестная), $$a,b,c$$ - числовые коэффициенты, стоящие...

Множина. Підмножина. Операції. Круги Ейлера-Венна

Множина Множину можна уявити собі як сукупність деяких об’єктів, що об’єднані за якоюсь ознакою. У математиці множини —...

Материалы по теме

27 задание ЗНО 2014

Решение 27 задание ЗНО 2014 по математике..

25 задание ЗНО 2014

Решение 25 задания ЗНО по математике..

Решение 1-5 задания пробного ЗНО 2015

Решение 5 заданий (с 1 по 5) пробного внешнего независимого оценивания 2015 по математике

Пробное ЗНО 2014 по математике. Задание 6

Решение 6 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 5

Решение 5 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 3

Решение 3 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 1

Решение 1 задания пробного ЗНО 2014 по математике..

Числа и выражения: признаки делимости, пропорции, проценты

Тест для подготовки к ДПА и ЗНО по математике. Признаки делимости, пропорции, проценты...

ЗНО 2013 по математике (2 сессия). 25 задание

Решение ЗНО 2013 по математике (2 сессия). 25 задание...

ЗНО 2013 по математике (2 сессия). 3 задание

Остаток от деления натурального числа $$k$$ на 5 равен 2. Укажите остаток...

ЗНО 2013 по математике (2 сессия). 2 задание

Диаграмма, изображенная на рисунке, содержит информацию о количестве электроэнергии (кВт·ч), потребленной некоторой...
Предыдущий материалНекоторые формулы арифметики
Следующий материалНОД и НОК чисел