Некоторые формулы арифметики

Арифме́тика [древне-греческое ἀριθμητική от ἀριθμός (аритмос или арифмос) — число] — раздел математики, изучающий числа, их простейшие отношения и свойства. Основными операциями в арифметике являются сложение, умножение, вычитание, деление, возведение в степень и извлечение корня.

Среднее арифметическое и среднее геометрическое чисел

Среднее арифметическое чисел

$$\frac{a_1+\ldots+a_n}{n}$$

Среднее геометрическое чисел

$$\sqrt[n]{a_{1}\cdot a_{2}\cdot \ldots\cdot a_{n}}, a_{i}\geqslant 0, i=\overline{1,n}$$

Проценты

Нахождение процента от данного числа $$a$$

$$a=100\%, x=p\%\Rightarrow x=\frac{ap}{100}$$

Нахождение числа по его проценту

пусть $$p\%$$ некоторого числа $$y$$ равны числу $$a,$$ тогда

$$a=p\%, y=100\%\Rightarrow y=\frac{a\cdot100}{p}$$

Нахождение процентного отношения двух чисел $$a$$ и $$b$$

$$\frac{a}{b}100\%$$

Формула простого процента

Если банк выплачивает клиенту ежемесячно $$p\%$$ от внесенной суммы $$A_0,$$ то на счету клиента через $$n$$ месяцев будет сумма:

$$A_n=A_0\cdot\left (1+\frac{p\cdot n}{100} \right )$$

Формула сложного процента

Если клиент положил в банк сумму $$A_0$$ под $$p\%$$ годовых, то через $$n$$ лет накопленный капитал составит:

$$A_n=A_0\cdot\left (1+\frac{p}{100} \right )^n$$

Бесконечная периодическая десятичная дробь

Всякое рациональное число представимо в виде бесконечной периодической десятичной дроби (возможно с нулевым периодом). Справедливо и обратное утверждение.

$$\frac{p}{q}=\pm \;a,\alpha_{1}\ldots\alpha_{n}(\beta_{1}\ldots\beta_{m})$$

$$\pm \;a,\alpha_{1}\ldots\alpha_{n}(\beta_{1}\ldots\beta_{m})=\pm \;a\pm 0,\alpha_{1}\ldots\alpha_{n}(\beta_{1}\ldots\beta_{m})=$$

$$=\pm \;a\pm \frac{\overline{\alpha_{1}\ldots\alpha_{n}\beta_{1}\ldots\beta_{m}}-\overline{\alpha_{1}\ldots\alpha_{n}}}{\underbrace{9\ldots9}_{\text{m}} \space \underbrace{0\ldots0}_{\text{n}}}$$

Проверьте свои знания в онлайн тестах по арифметике:
выбор 1 правильного ответа; соответствие логических пар; числовой ответ.

Поделиться

Больше материалов

Преобразование произведения тригонометрических функций в сумму

Произведение синусов есть полуразность косинуса разности и косинуса суммы: $$sin xsin y=frac{1}{2}left $$ Произведение...

Простые и составные числа. Признаки делимости

Простые и составные числа. Таблица простых чисел до 200. Признаки делимости.

Тангенсоида

Тангенсом называется функция вида $$f(x)=text{tg}x.$$ Область определения $$D(f)$$ - множество действительных чисел за исключением чисел вида $$frac{pi}{2}+pi k, kinmathbb{Z},$$...

Углы и окружность

Центральный и вписанный углы. Свойства вписанных углов. Радианное и градусное измерение углов. Теоремы об углах, связанных с окружностью.

Основные свойства и правила интегрирования

Основные свойства и правила Производная от неопределенного интеграла есть подынтегральная функция $$left ( int f(x),dx right...

Материалы по теме

27 задание ЗНО 2014

Решение 27 задание ЗНО 2014 по математике..

25 задание ЗНО 2014

Решение 25 задания ЗНО по математике..

Решение 1-5 задания пробного ЗНО 2015

Решение 5 заданий (с 1 по 5) пробного внешнего независимого оценивания 2015 по математике

Пробное ЗНО 2014 по математике. Задание 6

Решение 6 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 5

Решение 5 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 3

Решение 3 задания пробного ЗНО 2014 по математике..

Пробное ЗНО 2014 по математике. Задание 1

Решение 1 задания пробного ЗНО 2014 по математике..

Числа и выражения: признаки делимости, пропорции, проценты

Тест для подготовки к ДПА и ЗНО по математике. Признаки делимости, пропорции, проценты...

ЗНО 2013 по математике (2 сессия). 25 задание

Решение ЗНО 2013 по математике (2 сессия). 25 задание...

ЗНО 2013 по математике (2 сессия). 3 задание

Остаток от деления натурального числа $$k$$ на 5 равен 2. Укажите остаток...

ЗНО 2013 по математике (2 сессия). 2 задание

Диаграмма, изображенная на рисунке, содержит информацию о количестве электроэнергии (кВт·ч), потребленной некоторой...