23 задание пробного ЗНО 2015

На рисунках 1-5 приведена информация о пяти треугольниках.

Установите соответствие между вопросом и правильным ответом на него.

Вопрос

1. На каком рисунке изображен треугольник, у которого центры вписанной и описанной окружностей совпадают?
2. На каком рисунке изображен треугольник, один из внутренних углов которого равен $$30^{\circ}$$?
3. На каком рисунке изображен треугольник, площадь которого равна 10 см2?
4. На каком рисунке изображен треугольник, у которого диаметр описанной вокруг него окружности равен $$10\sqrt{2}$$ см?

Ответ

А. Рис. 1

Б. Рис. 2

В. Рис. 3

Г. Рис. 4

Д. Рис. 5

Решение

1. На рисунке 1 изображен правильный треугольник, значит центры вписанной и описанной окружностей совпадают, т.е. ответ 1 — А.

2. На рисунке 3 изображен прямоугольный треугольник с катетом в 2 раза меньшим гипотенузы, значит угол напротив этого катета равен $$30^{\circ}$$, т.е. ответ 2 — В.

3. На пятом рисунке изображен треугольник с основанием, равным 10 см, и высотой к этому основанию, равной 2 см. Значит площадь данного треугольника равна $$S_{\triangle}=\frac{1}{2}\cdot10\cdot2=10$$ см2. Т.е. ответ 3 — Д.

4. Проведем высоту $$BD$$ на сторону $$AC$$ с прилежащими углами в $$60^{\circ}$$ и $$45^{\circ}$$ в треугольнике $$\triangle ABC$$ из рисунка 4.

Рассмотрим треугольник $$\triangle ADB$$: $$\angle D=90^{\circ}$$, $$\angle B=90^{\circ}-60^{\circ}=30^{\circ}$$. Тогда $$AD=\frac{1}{2}AB=5$$ см, $$BD=AB\sin60^{\circ}=5\sqrt{3}$$ см.

Рассмотрим $$\triangle BDC$$: $$\angle D=90^{\circ}$$, $$\angle B=90^{\circ}-45^{\circ}=45^{\circ}$$. Значит треугольник $$\triangle BDC$$ равнобедренный прямоугольный и $$DC=BD=5 \sqrt{3}$$ см. По теореме Пифагора $$BC=\sqrt{2\cdot(5\sqrt{3})^2}=5\sqrt{6}$$ см.

Радиус описанной окружности для произвольного треугольника можно найти по формуле $$R=\frac{abc}{4S}$$, где $$a$$, $$b$$, $$c$$ — стороны треугольника, $$S$$ — площадь треугольника.

Найдем площадь треугольника по формуле $$S=\frac{1}{2}AC\cdot BD=\frac{(5+5\sqrt{3})\cdot5\sqrt{3}}{2}=\frac{25\sqrt{3}(1+\sqrt{3})}{2}$$.

Найдем диаметр описанной окружности $$d=\frac{10\cdot5\sqrt{6}\cdot5(1+\sqrt{3})}{25\sqrt{3}(1+\sqrt{3})}=10\sqrt{2}$$ см. Ответ 4 — Г.

Поделиться

Обратите внимание

Материалы по теме

Предыдущий материал22 задание пробного ЗНО 2015
Следующий материал24 задание пробного ЗНО 2015