Задание 59

Доказать, что если $$6x+2y=3$$, то $$x^2+y^2 \geqslant \frac{9}{40}$$.

Доказательство

$$y=\frac{3-6x}{2}$$

$$x^2+(\frac{3-6x}{2})^2=x^2+9x^2-9x+\frac{9}{4}=$$

$$=10(x^2-\frac{9}{10}x+\frac{9}{40})=10([x^2+\frac{81}{400}-2\cdot\frac{9}{20}x]-\frac{81}{400}+\frac{9}{40})=$$

$$=10([x-\frac{9}{20}]^2+\frac{9}{400})=10(x-\frac{9}{20})^2+\frac{9}{40}$$

$$(x-\frac{9}{20})^2\geqslant 0$$

$$10(x-\frac{9}{20})^2\geqslant 0$$

$$10(x-\frac{9}{20})^2+\frac{9}{40}\geqslant \frac{9}{40}$$

Что и требовалось доказать.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

Теги: