Задание 61

Найдите все значения параметра $$p$$, при которых все корни уравнения $$(p-3)x^2-2px+6p=0$$ положительны.

Решение

1) $$p=3$$

$$-6x+18=0$$

$$x=3 > 0$$

2) $$p\neq 3$$

Разделим на $$p-3$$

$$x^2-\frac{2p}{p-3}\cdot x+\frac{6p}{p-3}=0$$

Выделим полный квадрат в многочлене $$x^2-\frac{2p}{p-3}\cdot x+\frac{6p}{p-3}$$

$$[x^2-2\cdot\frac{p}{p-3}\cdot x+(\frac{p}{p-3})^2]-(\frac{p}{p-3})^2+\frac{6p}{p-3}=$$

$$=(x-\frac{p}{p-3})^2-(\frac{p}{p-3})^2+\frac{6p}{p-3}=(x-\frac{p}{p-3})^2+\frac{-p^2+6p^2-18p}{(p-3)^2}=$$

$$=(x-\frac{p}{p-3})^2+\frac{5p^2-18p}{(p-3)^2}$$

$$(x-\frac{p}{p-3})^2+\frac{5p^2-18p}{(p-3)^2}$$ — парабола, ветви которой направлены вверх, $$x_{\text{вершины}}=\frac{p}{p-3}$$, $$y_{\text{вершины}}=\frac{5p^2-18p}{(p-3)^2}$$.

Корни будут положительными, когда $$x_{\text{вершины}} > 0$$, $$y_{\text{вершины}} \leqslant 0$$ (парабола в правой полуплоскости, а точнее — вершина в IV четверти или на оси $$OX$$)

Решим эти неравенства

$$\frac{p}{p-3} > 0$$

Решая методом интервалов, получим $$p\in(-\infty;0)\cup(3;\infty)$$

$$\frac{5p^2-18p}{(p-3)^2} \leqslant 0$$

$$\frac{5p(p-\frac{18}{5})}{(p-3)^2}\leqslant 0$$

Умножим на $$(p-3)^3 > 0$$ и разделим на $$5 > 0$$

Получим эквивалентное неравенство

$$p(p-\frac{18}{5}) \leqslant 0$$

Решая его методом интервалов, получим $$p\in[0;3)\cup(3;3.6]$$

Пересекая $$p\in(-\infty;0)\cup(3;\infty)$$ и $$p\in[0;3)\cup(3;3.6]$$, получим $$p\in(3;3.6]$$

Найдем корни уравнения $$x^2-\frac{2p}{p-3}\cdot x+\frac{6p}{p-3}=0$$ и проверим их положительность

$$D_1=(\frac{p}{p-3})^2-\frac{6p}{p-3}=\frac{-5p^2+18p}{(p-3)^2}$$

Корни существуют при $$D_1 \geqslant 0$$, что совпадает с условием $$y_{\text{вершины}} \leqslant 0$$, а значит корни существуют при $$p\in(3;3.6]$$

$$x_{1,2}=\frac{p\pm\sqrt{18p-5p^2}}{p-3}$$

Очевидно, что при $$p\in(3;3.6]$$ $$0\leqslant\sqrt{5p(3.6-p)} < 3$$ Тогда $$\frac{p-\sqrt{18p-5p^2}}{p-3} > 0$$ и $$\frac{p+\sqrt{18p-5p^2}}{p-3} > 0$$

3) Итак, получили, что корни уравнения $$(p-3)x^2-2px+6p=0$$ положительны при $$p\in[3;3.6]$$

Ответ: $$p\in[3;3.6]$$

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.