Формулы приведения

Можно не заучивать формулы приведения тригонометрических функций. Достаточно знать правило, состоящее из двух пунктов.

Правило

1. Если мы откладываем угол от вертикальной оси, то совершаем кивок головой сверху-вниз (снизу-вверх) вдоль оси $$Oy$$ и говорим «да», значит приводимая функция меняется: синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс.

Если мы откладываем угол от горизонтальной оси, то совершаем движение головой слева-направо (справа-налево) вдоль оси $$Ox$$ и говорим «нет», значит приводимая функция не меняется.

2. Знак правой части равенства совпадает со знаком приводимой функции, стоящей в левой части равенства.

Таблица. Формулы приведения

Функция

 Аргумент

$$-\alpha$$$$90^{\circ}-\alpha$$$$90^{\circ}+\alpha$$$$180^{\circ}-\alpha$$$$180^{\circ}+\alpha$$$$270^{\circ}-\alpha$$$$270^{\circ}+\alpha$$$$360^{\circ}-\alpha$$$$360^{\circ}+\alpha$$
$$-\alpha$$$$\frac{\pi}{2}-\alpha$$$$\frac{\pi}{2}+\alpha$$$$\pi-\alpha$$$$\pi+\alpha$$$$\frac{3\pi}{2}-\alpha$$$$\frac{3\pi}{2}+\alpha$$$$2\pi-\alpha$$$$2\pi+\alpha$$
$$\sin x$$$$-\sin\alpha$$$$\cos\alpha$$$$\cos\alpha$$$$\sin\alpha$$$$-\sin\alpha$$$$-\cos\alpha$$$$-\cos\alpha$$$$-\sin\alpha$$$$\sin\alpha$$
$$\cos x$$$$\cos\alpha$$$$\sin\alpha$$$$-\sin\alpha$$$$-\cos\alpha$$$$-\cos\alpha$$$$-\sin\alpha$$$$\sin\alpha$$$$\cos\alpha$$$$\cos\alpha$$
$$\text{tg}\, x$$$$-\text{tg}\,\alpha$$$$\text{ctg}\,\alpha$$$$-\text{ctg}\,\alpha$$$$-\text{tg}\,\alpha$$$$\text{tg}\,\alpha$$$$\text{ctg}\,\alpha$$$$-\text{ctg}\,\alpha$$$$-\text{tg}\,\alpha$$$$\text{tg}\,\alpha$$
$$\text{ctg}\, x$$$$-\text{ctg}\,\alpha$$$$\text{tg}\,\alpha$$$$-\text{tg}\,\alpha$$$$-\text{ctg}\,\alpha$$$$\text{ctg}\,\alpha$$$$\text{tg}\,\alpha$$$$-\text{tg}\,\alpha$$$$-\text{ctg}\,\alpha$$$$\text{ctg}\,\alpha$$

Поделиться

Больше материалов

НОД и НОК чисел

Этапы нахождения НОД и НОК чисел.

Углы и окружность

Центральный и вписанный углы. Свойства вписанных углов. Радианное и градусное измерение углов. Теоремы об углах, связанных с окружностью.

Котангенсоида

Котангенс $$y=text{ctg}x.$$ Функция определена при любом $$x,$$ за исключением точек вида $$pi k, kinmathbb{Z}.$$ Область значений $$yin(-infty;infty).$$ Котангенс -...

Связь между тригонометрическими функциями одного аргумента

Основные формулы тригонометрических функций одного аргумента. Связь между синусом, косинусом, тангенсом и котангенсом...

Правила дифференцирования. Таблица производных. Геометрический и физический смыслы производной

Определение Производной функции $$y=f(x)$$ в точке $$x$$ называется предел отношения приращения функции $$Delta y$$ к приращению $$Delta x$$...

Материалы по теме

22 задание пробного ЗНО 2015

Решение 22 задания пробного ЗНО 2015 по математике..

21 задание ЗНО 2014

Решение 21 задания ЗНО 2014 по математике..

21 задание пробного ЗНО 2015

Решение 21 задания пробного ЗНО 2015 по математике..

13 задание пробного ЗНО 2015

Решение 13 тестового задания по математике пробного ЗНО 2015..

Тригонометрические выражения

Пройдите онлайн тест по теме "Тригонометрические выражения" и узнайте, насколько Вы подготовлены к ДПА и ЗНО..

Задание 52

Задание на доказательство. Преобразование суммы тригонометрических функций в произведение..

14 задание ЗНО 2014

Решение 14 задание ЗНО 2014 по математике..

ЗНО 2013 по математике (2 сессия). 28 задание

Решение ЗНО 2013 по математике (2 сессия). 28 задание...