Алгебра

Корни квадратного уравнения

Квадратным уравнением называется уравнение вида:

$$ax^2+bx+c=0\;(a\neq0),$$

где $$x$$ — переменная (неизвестная), $$a,b,c$$ — числовые коэффициенты, стоящие соответственно при второй, первой и нулевой степенях неизвестной.

Формулы корней для квадратного уравнения, записанного в общем виде
$$ax^2+bx+c=0\;(a\neq0)$$ — квадратное уравнение.

$$D=b^2-4ac$$ — дискриминант.

1) Если дискриминант неотрицательный, т.е. $$D\geqslant 0,$$ то уравнение имеет два действительных корня

(при $$D>0$$ корни разные, а при $$D=0$$ корни совпадают)

$$x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$$

2) Если дискриминант отрицательный, т.е. $$D<0,$$ то уравнение действительных корней не имеет.


Формулы корней для уравнения с четным коэффициентом при переменной в 1 степени
Если коэффициент $$b,$$ стоящий при переменной в первой степени, является четным числом, т.е. $$b=2k,$$ то уравнение примет вид:

$$ax^2+2kx+c=0$$

Выпишем формулы дискриминанта и корней для такого уравнения:

$$D_{1}=k^2-ac$$

$$x_{1,2}=\frac{-k\pm\sqrt{D_{1}}}{a}\;\left (D_{1}\geqslant 0 \right )$$


Формулы корней для приведенного уравнения
Если коэффициент $$a,$$ стоящий при переменной во второй степени, равен единице, то перепишем первоначальное уравнение в следующем виде:

$$x^2+px+q=0$$

Такое уравнение называется приведенным.

Выпишем формулы дискриминанта и корней для такого уравнения:

$$D_{2}=\frac{p^2}{4}-q$$

$$x_{1,2}=-\frac{p}{2}\pm\sqrt{D_{2}}\;(D_{2}\geqslant 0)$$


Утверждения: Теорема Виета; Формула разложения
Справедливы следующие утверждения:

Теорема Виета:

1) Если $$x_{1},\;x_{2}$$ — корни квадратного уравнения $$x^2+px+q=0,$$ то

$$x_{1}+x_{2}=-p$$

$$x_{1}\cdot x_{2}=q$$

2) Если $$x_{1},\;x_{2}$$ — корни квадратного уравнения $$ax^2+bx+c=0\;(a\neq0),$$ то

$$x_{1}+ x_{2}=-\frac{b}{a}$$

$$x_{1}\cdot x_{2}=\frac{c}{a}$$

Формула разложения квадратного трехчлена на множители:

Если $$x_{1},\;x_{2}$$ — корни квадратного уравнения $$ax^2+bx+c=0\;(a\neq0),$$ то

$$ax^2+bx+c=a(x-x_{1})(x-x_{2})$$

Примеры: Задание 4 (Алгебра)

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!