Задание 40 (Геометрия. 8 класс)

В рамках подготовки к ДПА по математике предлагаем геометрическую задачу на нахождение расстояния от точки до прямой через наклонные и их проекции.

Задача

Из точки к прямой проведены две наклонные, разность длин которых равна 2 см, а разность длин их проекций равна 4 см. Найти расстояние от точки до прямой, если длина меньшей наклонной натуральное число, меньшее 6.

Решение:

Из точки $$B$$ к прямой $$AC$$ проведены две наклонные $$BA$$ и $$BC,$$ $$BC-BA=2$$ см. $$AD$$ и $$CD$$ — проекции наклонных, $$CD-AD=4$$ см. $$BD$$ — расстояние от точки $$B$$ до прямой $$AC,$$ $$BD\perp AC.$$

Наклонные к прямой

Пусть $$AB$$ — меньшая наклонная, $$AB=x\;\left (x\in\mathbb{N},x<6 \right ),$$ тогда по условию $$BC = (x + 2).$$ Рассмотрим два прямоугольных треугольника $$BDA$$ и $$BDC.$$ По теореме Пифагора $$BD^2=AB^2-AD^2$$ и $$BD^2=BC^2-DC^2.$$

Левые части равны, значит равны и правые части

$$AB^2-AD^2=BC^2-DC^2\Rightarrow BC^2-AB^2=DC^2-AD^2$$

Так как разность длин проекций равна 4 см, то

$$(x+2)^2-x^2=(AD+4)^2-AD^2$$

Применим формулу разности квадратов, приведем подобные слагаемые и получим

$$4(x+1)=8(AD+2)$$

Выразим $$AD$$

$$AD=\frac{x-3}{2}$$

$$AD>0\Rightarrow x>3$$ $$\Rightarrow x=4$$ или $$x=5.$$

1) $$x=4$$

$$AB=4,\;BC=4+2=6,\;AD=\frac{4-3}{2}=\frac{1}{2},\;DC=\frac{1}{2}+4=\frac{9}{2}$$

$$BD^2=4^2-\left ( \frac{1}{2} \right )^2=\frac{64-1}{4}=\frac{63}{4}\Rightarrow BD=\frac{3\sqrt{7}}{2}$$ (см)

или из второго треугольника

$$BD^2=6^2-\left ( \frac{9}{2} \right )^2=\frac{144-81}{4}=\frac{63}{4}\Rightarrow BD=\frac{3\sqrt{7}}{2}$$ (см)

Видим, что значения совпадают, т.е. расстояние равно $$\frac{3\sqrt{7}}{2}$$ см.

2) $$x=5$$

$$AB=5,\;BC=5+2=7,\;AD=\frac{5-3}{2}=1,\;DC=1+4=5$$

$$BD^2=5^2-1^2=24\Rightarrow BD=2\sqrt{6}$$ (см)

аналогично из второго треугольника

$$BD^2=7^2-5^2=24\Rightarrow BD=2\sqrt{6}$$ (см).

Т.е. расстояние равно $$2\sqrt{6}$$ см.

Ответ: $$\frac{3\sqrt{7}}{2}$$ см или $$2\sqrt{6}$$ см.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!