Тригонометрия

Задание 6 (Тригонометрия)

Доказать, что:

$$\sin^6x+\cos^6x\geqslant 0.25$$

Рекомендуем ознакомиться с основными формулами: Формулы сокращенного умножения, Тригонометрические формулы.

Доказательство:

$$\sin^6x+\cos^6x=(\sin^2x)^3+(\cos^2x)^3=\left ( \sin^2x+\cos^2x \right )\left ( (\sin^2x)^2+(\cos^2x)^2-\sin^2x\cos^2x \right )=$$

$$=\left ( (\sin^2x)^2+(\cos^2x)^2+2\sin^2x\cos^2x \right )-3\sin^2x\cos^2x=$$

$$=\left (\sin^2x+\cos^2x \right )^2-3\sin^2x\cos^2x=1-3\cdot(\frac{1}{2}\cdot2\sin x\cos x)^2=$$

$$=1-\frac{3}{4}\cdot\sin^22 x$$

$$\sin^22x\leqslant 1\Rightarrow 1-\frac{3}{4}\cdot\sin^22 x\geqslant \frac{1}{4}$$

Получили $$\sin^6x+\cos^6x\geqslant 0.25$$

ч.т.д.

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!