Решение простейших тригонометрических уравнений

Предлагаем ознакомится с материалами по тригонометрии: Определение тригонометрических функций, Свойства обратных тригонометрических функций, Значения обратных тригонометрических функций.

В общем виде

$$\sin x=a,\;|a|\leqslant 1\Rightarrow x=(-1)^k\arcsin\,a+\pi k,\;k\in\mathbb{Z}$$

или $$\left[\begin{matrix} x&=&\arcsin\,a+2\pi k,&\;k\in\mathbb{Z}\\ x&=&\pi-\arcsin\,a+2\pi l,&\;l\in\mathbb{Z} \end{matrix}\right.$$

$$\cos x=a,\;|a|\leqslant 1\Rightarrow x=\pm\arccos\,a+2\pi k,\;k\in\mathbb{Z}$$

$$\text{tg}\, x=a,\;a\in\mathbb{R}\Rightarrow x=\text{arctg}\,a+\pi k,\;k\in\mathbb{Z}$$

$$\text{ctg}\, x=a,\;a\in\mathbb{R}\Rightarrow x=\text{arcctg}\,a+\pi k,\;k\in\mathbb{Z}$$

Частные случаи

a = 0

$$\sin x=0\Rightarrow x=\pi k,\;k\in\mathbb{Z}$$

$$\cos x=0\Rightarrow x=\frac{\pi}{2}+\pi k,\;k\in\mathbb{Z}$$

$$\text{tg}\, x=0\Rightarrow x=\pi k,\;k\in\mathbb{Z}$$

$$\text{ctg}\, x=0\Rightarrow x=\frac{\pi}{2}+\pi k,\;k\in\mathbb{Z}$$

a = 1

$$\sin x=1\Rightarrow x=\frac{\pi}{2}+2\pi k,\;k\in\mathbb{Z}$$

$$\cos x=1\Rightarrow x=2\pi k,\;k\in\mathbb{Z}$$

$$\text{tg}\, x=1\Rightarrow x=\frac{\pi}{4}+\pi k,\;k\in\mathbb{Z}$$

$$\text{ctg}\, x=1\Rightarrow x=\frac{\pi}{4}+\pi k,\;k\in\mathbb{Z}$$

a = – 1

$$\sin x=-1\Rightarrow x=-\frac{\pi}{2}+2\pi k,\;k\in\mathbb{Z}$$

$$\cos x=-1\Rightarrow x=\pi+2\pi k,\;k\in\mathbb{Z}$$

$$\text{tg}\, x=-1\Rightarrow x=-\frac{\pi}{4}+\pi k,\;k\in\mathbb{Z}$$

$$\text{ctg}\, x=-1\Rightarrow x=\frac{3\pi}{4}+\pi k,\;k\in\mathbb{Z}$$

Поделиться

Больше материалов

Свойства обратных тригонометрических функций

Так как геометрически значение обратной тригонометрической функции связано с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному...

Косинусоида

Косинус $$y=cos x.$$ Функция косинус определена при любом $$x,$$ то есть область определения есть множество $$mathbb{R}$$ всех действительных чисел. Областью значений функции косинус...

Многочлены

Одночлены. Многочлены. Деление многочленов. Теорема Безу. Схема Горнера. Разложение многочленов на множители.

Степени и корни. Их свойства

$$a^x$$ называется степенью с основанием $$a$$ и показателем $$x,$$ если $$a$$ перемножается само на себя $$x$$ разСвойства степеней:

Графики обратных тригонометрических функций

Обратными тригонометрическими функциями называются функции $$y=arcsin x,$$ $$y=arccos x,$$ $$y=text{arctg}x,$$ $$y=text{arcctg}x.$$ График арксинуса $$y=arcsin x$$

Материалы по теме

22 задание пробного ЗНО 2015

Решение 22 задания пробного ЗНО 2015 по математике..

21 задание ЗНО 2014

Решение 21 задания ЗНО 2014 по математике..

21 задание пробного ЗНО 2015

Решение 21 задания пробного ЗНО 2015 по математике..

13 задание пробного ЗНО 2015

Решение 13 тестового задания по математике пробного ЗНО 2015..

Тригонометрические выражения

Пройдите онлайн тест по теме "Тригонометрические выражения" и узнайте, насколько Вы подготовлены к ДПА и ЗНО..

Задание 52

Задание на доказательство. Преобразование суммы тригонометрических функций в произведение..

14 задание ЗНО 2014

Решение 14 задание ЗНО 2014 по математике..

ЗНО 2013 по математике (2 сессия). 28 задание

Решение ЗНО 2013 по математике (2 сессия). 28 задание...