Взаємне розташування двох прямих у просторі

Згадайте різні види рівняння прямої на площині та у просторі, взаємне розташування прямих на площині.

Розглянемо деякі співвідношення, які виражають особливості взаємного розташування двох просторових прямих $$\frac{x-x_1}{l_1}=\frac{y-y_1}{m_1}=\frac{z-z_1}{n_1}$$ і $$\frac{x-x_2}{l_2}=\frac{y-y_2}{m_2}=\frac{z-z_2}{n_2}$$:

  • якщо кут між двома прямими дорівнює $$\phi$$, то
    $$\cos\phi=\frac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^2+m_1^2+n_1^2}\sqrt{l_2^2+m_2^2+n_2^2}}$$;
  • якщо прямі паралельні, то $$\frac{l_1}{l_2}=\frac{m_1}{m_2}=\frac{n_1}{n_2}$$;
  • якщо прямі перпендикулярні, то $$l_1l_2+m_1m_2+n_1n_2=0$$
  • якщо дві прямі знаходяться в одній тій же площині (компланарні), то
    $$D=\begin{vmatrix} x_2-x_1 y_2-y_1 z_2-z_1\\ l_1 m_1 n_1\\ l_2 m_2 n_2 \end{vmatrix}=0$$
  • Якщо при цьому $$\vec{S_1}\parallel \vec{S_2}\;\left ( \frac{l_1}{l_2}\neq\frac{m_1}{m_2}\neq\frac{n_1}{n_2} \right )$$, то прямі, залишаючись компланарними, перетинаються.
  • Якщо $$D\neq0$$($$\overrightarrow{M_1M_2},\,\vec{S_1},\,\vec{S_2}$$ – некомпланарні), то прямі мимобіжні.
  • Якщо прямі зливаються (співпадають), то $$\overrightarrow{M_1M_2}\parallel\vec{S_1},\;\overrightarrow{M_1M_2}\parallel\vec{S_2}.$$

Поделиться

Больше материалов

Вступні означення, зміст та властивості лінійних операцій над векторами

Вектором називається направлений відрізок (упорядкована пара точок). До векторів належить також і нульовий вектор, початок і кінець...

Скалярний добуток векторів

Скалярний добуток векторів Скалярним добутком векторів $$vec{a}$$ і $$vec{b}$$ називається число, яке дорівнює добутку довжин цих векторів на...

Елементи теорії визначників і матриць

Основні означення Запис $$A_{(ntimes m)}$$ слід читати, як матриця $$A$$ розмірності $$(ntimes m)$$, де $$n$$ - кількість рядків,...

Мішаний добуток векторів

Мішаний добуток векторів Мішаним добутком векторів $$vec{a},;vec{b},;vec{c}$$ називається число, що дорівнює скалярному добутку вектора $$vec{a}"$$ на вектор, який...

Векторний добуток векторів

Векторний добуток векторів Векторним добутком векторів $$vec{a}$$ і $$vec{b}$$ називається вектор $$vec{b}$$, який задовольняє наступним умовам:

Материалы по теме

Система «площина — пряма лінія» у просторі

Згадаємо теоретичні матеріали: Рівняння площини у просторі, Різні види рівняння прямої у...

Різні види рівняння прямої у просторі

Пропонуємо згадати види рівняння прямої на площині. Загальне...

Задания 33-35 (составить уравнение плоскости)

Предлагаем Вашему вниманию 3 задания по аналитической геометрии на составление уравнения плоскости...

Задание 32 (расстояние от точки до плоскости)

Найти расстояние от точки $$M(3; 5; -8)$$ до плоскости $$6x - 3y + 2z - 28 = 0$$.

Рівняння площини у просторі

Виклад теорії ведеться на векторній основі, що не тільки ефективно гарантує засвоєння...

Задание 23 (Найпростіший вид лінії другого порядку)

Привести до найпростішого виду рівняння лінії другого порядку $$3y^2+5x+6y+13=0$$. Визначити вид і...

Задание 22 (Канонічний вид кривої другого порядку)

Рівняння лінії другого порядку $$x^2-y^2-4x+2y+7=0$$ привести до найпростішого виду.

Задание 20 (Крива другого порядку. Канонічний вид)

Рівняння лінії другого порядку $$9x^2+16y^2-90x+32y+97=0$$ привести до канонічного виду. Визначити тип і...

Задание 19 (Коло. Канонічний вид)

Перед розв'язуванням завдання рекомендуємо ознайомитися з теорією: Рівняння кривих другого порядку. Коло;...

Приведення рівнянь ліній другого порядку до канонічного виду

Загальне рівняння лінії другого порядку Загальне рівняння лінії...

Криві другого порядку. Парабола

Парабола є незамкненою лінією, що складається із...

Криві другого порядку. Гіпербола

Гіпербола складається із двох гілок незамкнених кривих. Аналітично це геометричне місце точок...
Предыдущий материалДПА 2012. 9 класс. Вариант 7. Задание 3.1
Следующий материалЗадание 36 (ЕГЭ. B12 №27970)