ЗНО 2013 з математики

Пробне ЗНО 2013 з математики. Розв’язок 29 завдання

В рамках подготовки к ДПА (ГИА) и ЗНО (ВНО) по математике рассмотрим решение задачи по теории вероятностей (задание № 29 ПЗНО 2013).

Задание № 29

Студенти двох груп (у першій — 20 студентів, у другій — 25 студентів) обирають по одному представнику з кожної групи для участі в студентському заході. Знайдіть ймовірність того, що учасниками заходу будуть обрані старости цих груп. Вважайте, що всі студенти кожної групи мають однакові шанси стати учасниками заходу, і в кожній групі є один староста.

Решение:

Найдем вероятность того, что в первой группе для участия в студенческом мероприятии выберут старосту (событие A)

$$P(A)=\frac{1}{20}$$, так как число благоприятных исходов равно единице (1 староста), а число всевозможных исходов равно двадцати (20 студентов в первой группе).

Аналогично $$P(B)=\frac{1}{25}$$ — вероятность того, что во второй группе для участия в мероприятии выберут старосту (событие B).

A и B — независимые события (выбор участников в каждой группе не зависит друг от друга).

По теореме произведения независимых событий найдем вероятность того, что в первой группе выбрали старосту и во второй группе выбрали старосту

$$P(A\cdot B)=P(A)\cdot P(B)=\frac{1}{20}\cdot\frac{1}{25}=\frac{1}{500}=0.002$$

Ответ: 0.002.

Также рекомендуем пройти бесплатный онлайн тест и ознакомиться с решением других заданий пробного ЗНО 2013 по ссылкам:

Если у Вас возникают трудности, то опытный репетитор (Донецк, онлайн занятия) поможет Вам в подготовке к ГИА (ДПА) или ВНО (ЗНО) по математике.

С уважением, Сергей Бондаренко.

Понравилось? Поделись с друзьями!